Silvio S. Cerri

Laboratoire Lagrange, CNRS, Observatoire de la Côte d'Azur, Université Côte d'Azur

Thanks: **M. W. Kunz** (Princeton University) **F. Califano** (Università di Pisa)

Interconnections between the physics of plasmas and self-gravitating systems — KITP, July 1st, 2024

Phase-space cascades in (simulations of) plasma turbulence

silvio.cerri@oca.eu

The solar wind as plasma-turbulence laboratory

SA [credit: NA

The solar wind as plasma-turbulence laboratory

Solar-wind (SW) temperature profile vs distance: decreases slower than it should for a simple adiabatic expansion

Dissipation of turbulent fluctuations can account for the observed *extra heating*

SW is very weakly collisional -> *kinetic effects* must play a relevant role in *turbulent dissipation*

(preferential heating of ions perpendicular to B)

The **nature of the kinetic cascade** and the energy partition among species

determined across the transition region (and perhaps in part of the sub-ion range)

Resonant mechanisms:

> Landau damping (*parallel* heating)

→ heating model(s): Howes MNRAS (2010), Kawazura+ PNAS (2019)

> **Ion-cyclotron damping** (*perpendicular* heating)

→ heating model(s): Arunasalam PRL (1976), Cranmer ApJS (2014)

Non-resonant mechanism:

> Stochastic heating (perpendicular heating) → heating model(s): Chandran+ ApJ (2010), Cerri+ ApJ (2021)

(some) ion-heating mechanisms

(some) ion-heating mechanisms

PLASMAS

Resonant mechanisms:

> Landau damping (parallel heating)

→ heating model(s): Howes MNRAS (2010), Kawazura+ PNAS (2019)

Ion-cyclotron damping (perpendicular heating)

→ heating model(s): Arunasalam PRL (1976), Cranmer ApJS (2014)

Non-resonant mechanism:

Stochastic heating (perpendicular heating)
 heating model(s): Chandran+ ApJ (2010), Cerri+ ApJ (2021)

So What is the behavior of δf in phase space? (and how to conveniently represent it?)

 $\delta f(\boldsymbol{x}, \boldsymbol{v}) \doteq f(\boldsymbol{x}, \boldsymbol{v}) - F_{\mathrm{M}}(\boldsymbol{x}, \boldsymbol{v})$

So What is the behavior of δf in phase space? (and how to conveniently represent it?)

linear ("parallel") phase mixing

non-linear ("perpendicular") phase mixing

Solution What is the behavior of δf in phase space? (and how to conveniently represent it?)

linear ("parallel") phase mixing

- due to ballistic evolution of δf along **B** ("parallel"):

 $\delta f \sim exp(-ik_{||}v_{||}t)$

- slower than its nonlinear counterpart at scales below the ion gyro-radius ρ_i (in strong turbulence)

```
\rightarrow dominant only at k_{\perp}\rho_i < 1
```

non-linear ("perpendicular") phase mixing

Solution What is the behavior of δf in phase space? (and how to conveniently represent it?)

linear ("parallel") phase mixing

- due to ballistic evolution of δf along **B** ("parallel"):

 $\delta f \sim exp(-ik_{||}v_{||}t)$

- slower than its nonlinear counterpart at scales below the ion gyro-radius ρ_i (in strong turbulence)

```
\rightarrow dominant only at k_{\perp}\rho_i < 1
```

de-correlated k_{\perp} -fluctuations in the plane perp. to **B**:

- occurring only at scales below the ion gyro-radius $(k_{\perp}\rho_i \gg 1)$

- faster than its linear counterpart (in strong turbulence)

What is the behavior of δf in phase space? (and how to conveniently represent it?)

Solution What is the behavior of δf in phase space? (and how to conveniently represent it?)

Hermite representation:

$$\delta f_{\boldsymbol{m}} \doteq \langle \delta f_{\boldsymbol{m}}(\boldsymbol{x}) \rangle =$$

 $-\langle ... \rangle =$ spatial average

- basis functions:

$$\psi_m(v) = \frac{H_m(v/v_{\rm th})}{\sqrt{2^m m! \sqrt{\pi^2}}}$$

- H_m = "physicists' Hermite polynomials"

Phase-space dynamics

 $\left\langle \int_{-\infty}^{+\infty} \delta f(\boldsymbol{x}, \boldsymbol{v}) \psi_{\boldsymbol{m}}(\boldsymbol{v}) \, \mathrm{d}^{3} \boldsymbol{v} \right\rangle$

 $= e^{-v^2/(2v_{\rm th}^2)}$ $v_{
m th}$

 $\int_{-\infty}^{+\infty} \psi_n(v) \,\psi_m(v) \,\mathrm{d}v = \delta_{nm}$

 $H_m(x) \doteq (-1)^m e^{x^2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} e^{-x^2}$

Solution What is the behavior of δf in phase space? (and how to conveniently represent it?)

Proof Section 2.1.5 Hermite representation — δf_{ion} from in-situ data (MMS in the turbulent Earth's magnetosheath; $\delta B/B \sim 1.5$)

(2017)

PRL

Servidio

So What is the behavior of δf in phase space? (and how to conveniently represent it?)

Solution What is the behavior of δf in phase space? (and how to conveniently represent it?)

Example 7 For the second se

Solution What is the behavior of δf in phase space? (and how to conveniently represent it?)

 \blacktriangleright Hermite representation — what to expect for δf spectrum from different processes?

> linear phase mixing (in parallel-to-**B** m-space) $\rightarrow \sim m_{\parallel}^{-1/2}$ [Watanabe & Sugama, PoP (2004); Zocco & Schekochihin, PoP (2011); Kanekar et al., JPP (2015); Adkins & Schekochihin, JPP (2018); ...]

> non-linear phase mixing (in <u>field-perpendicular</u> m-space)

- classic GK theory in kinetic-Alfvén-wave (KAW) turbulence $\rightarrow \sim m_{\perp}^{-7/6}$ [Schekochihin et al., ApJS (2009); Cerri et al., ApJ (2018)]
- intermittency corrected KAW cascade $\rightarrow \sim m_{\perp}^{-4/3}$ [Cerri et al., ApJ (2018)]
- constant-anisotropy sub-ion-scale regime $\rightarrow \sim m_{\perp}^{-3/2}$

[Cerri et al., ApJ (2018)]

> hydro-like agruments on Vlasov eq. (v-space only, no k-dep. of flucts, isotropic in m) $\rightarrow \sim m^{-3/2}$ or $\sim m^{-2}$

[Servidio et al., PRL (2017)]

Solution What is the behavior of δf in phase space? (and how to conveniently represent it?)

Fourier-Hermite representation:

 $\delta f_{\boldsymbol{k},\boldsymbol{m}} \doteq \frac{1}{(2\pi)^{3/2}} \int \int \delta f(\boldsymbol{x},\boldsymbol{v}) e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \psi_{\boldsymbol{m}}(\boldsymbol{v}) d^3 \boldsymbol{x} d^3 \boldsymbol{v}$

Solution What is the behavior of δf in phase space? (and how to conveniently represent it?)

Fourier-Hermite representation:

 $\delta f_{\boldsymbol{k},\boldsymbol{m}} \doteq \frac{1}{(2\pi)^{3/2}} \int \int \delta$

$$\delta f(\boldsymbol{x}, \boldsymbol{v}) e^{-i \boldsymbol{k} \cdot \boldsymbol{x}} \psi_{\boldsymbol{m}}(\boldsymbol{v}) d^3 \boldsymbol{x} d^3 \boldsymbol{v}$$

$$rac{\delta v_{\perp}}{v_{\mathrm{th,i}}} \sim rac{1}{
ho_{\mathrm{i}}} \left| rac{v_{\perp}}{\Omega_{\mathrm{c,i}}} - rac{v_{\perp}'}{\Omega_{\mathrm{c,i}}}
ight| \sim rac{1}{k_{\perp}
ho_{\mathrm{i}}}$$

[Schekochihin et al., PPCF (2008)]

Solution What is the behavior of δf in phase space? (and how to conveniently represent it?)

Fourier-Hermite representation:

 $\delta f_{\boldsymbol{k},\boldsymbol{m}} \doteq \frac{1}{(2\pi)^{3/2}} \int \int$

the phase-space cascade induced by nonlinear phase mixing will obey the following relation in Fourier-Hermite space [Cerri et al., ApJL (2018)]

I this does not need any particular ordering nor depends on the scaling of background fluctuations!

$$\delta f(\boldsymbol{x}, \boldsymbol{v}) e^{-i \boldsymbol{k} \cdot \boldsymbol{x}} \psi_{\boldsymbol{m}}(\boldsymbol{v}) d^3 \boldsymbol{x} d^3 \boldsymbol{v}$$

$$rac{\delta v_{\perp}}{v_{
m th,i}} \sim rac{1}{
ho_{
m i}} \left| rac{v_{\perp}}{\Omega_{
m c,i}} - rac{v_{\perp}'}{\Omega_{
m c,i}}
ight| \sim rac{1}{k_{\perp}
ho_{
m i}}$$
 [Sch

hekochihin et al., PPCF (2008)]

$$m_\perp \, \propto \, k_\perp^2$$

The hybrid-kinetic model

Fully kinetic ions (Vlasov equation for $f_i(x, v, t) - Eulerian$ approach: 3D-3V phase-space grid) $\frac{\partial f_{\mathrm{i}}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} f_{\mathrm{i}} + \frac{e}{m}$

Electron fluid (generalized Ohm's law for E - with finite electron-intertia effects)

$$\left(1-d_{
m e}^2
abla^2
ight) oldsymbol{E} = - \, rac{oldsymbol{u}_{
m i} imes oldsymbol{B}}{c} + \, rac{oldsymbol{J} imes oldsymbol{B}}{enc} \, - \, rac{oldsymbol{
abla} p_{
m e}}{en} + \, rac{4\pi d_{
m e}^2}{c^2} oldsymbol{
abla} \cdot \left(oldsymbol{u}_{
m i} oldsymbol{J} + oldsymbol{J} oldsymbol{u}_{
m i} - rac{oldsymbol{J} oldsymbol{J}}{en}
ight)$$

Maxwell's equations (Faraday equation for B + Ampere's law — w/o displacement current)

$$\frac{\partial \boldsymbol{B}}{\partial t} = -c\,\boldsymbol{\nabla}\times\boldsymbol{E}$$

- Quasi-neutrality is assumed ($n_e = n_i \doteq n$)
- Isothermal closure for the electron fluid ($p_e = n T_{e,0}$)
- Reduced mass ratio ($m_i / m_e = 100$);
- Small-scale dissipation: numerical filters

refor more details: Califano & Cerri, Chapter 5 in "Space and Astrophysical Plasma Simulation. Methods, Algorithms, and Applications", Springer (2023)

$$rac{\partial \boldsymbol{e}}{\partial \mathbf{i}} \left(\boldsymbol{E} + rac{\boldsymbol{v}}{c} imes \boldsymbol{B}
ight) \cdot rac{\partial f_{\mathrm{i}}}{\partial \boldsymbol{v}} = 0$$

$$\nabla \times \boldsymbol{B} = \frac{4\pi}{c} \boldsymbol{J}$$

[$n(\mathbf{x},t)$ and $u_i(\mathbf{x},t)$ are *v*-space moments of $f_i(\mathbf{x},\mathbf{v},t)$] $[T_{e,0} = T_{i,0} \text{ at } t = 0]$ $[d_{e^2} = m_e c^2 / 4\pi n_e e^2 = \text{electron inertial length}]$ [spectral-like filters (Lele, JCP 1992)]

3D-3V hybrid-Vlasov-Maxwell turbulence simulations

[Cerri et al., ApJL (2017, 2018)]

[Cerri, Kunz & Califano, ApJL (2018)]

 $\delta f(\boldsymbol{x}, \boldsymbol{v}) \doteq f(\boldsymbol{x}, \boldsymbol{v}) - F_{\mathrm{M}}(\boldsymbol{x}, \boldsymbol{v})$

[Cerri, Kunz & Califano, ApJL (2018)]

$$\delta f_{\boldsymbol{m}} \doteq \langle \delta f_{\boldsymbol{m}}(\boldsymbol{x}) \rangle = \left\langle \int_{-\infty}^{+\infty} \delta f(\boldsymbol{x}, \boldsymbol{v}) \psi_{\boldsymbol{m}}(\boldsymbol{v}) d^{3} \boldsymbol{v} \right\rangle$$

 $\delta f(\boldsymbol{x}, \boldsymbol{v}) \doteq f(\boldsymbol{x}, \boldsymbol{v}) - F_{\mathrm{M}}(\boldsymbol{x}, \boldsymbol{v})$

[Cerri, Kunz & Califano, ApJL (2018)]

$$\delta f_{\boldsymbol{m}} \doteq \langle \delta f_{\boldsymbol{m}}(\boldsymbol{x}) \rangle = \left\langle \int_{-\infty}^{+\infty} \delta f(\boldsymbol{x}, \boldsymbol{v}) \psi_{\boldsymbol{m}}(\boldsymbol{v}) d^{3} \boldsymbol{v} \right\rangle$$

$$\boldsymbol{v}) \doteq f(\boldsymbol{x}, \boldsymbol{v}) - F_{\mathrm{M}}(\boldsymbol{x}, \boldsymbol{v})$$

 $\log |\delta f_{\boldsymbol{k},\boldsymbol{m}}|^2$

-5.

-13.

-21.

[Cerri, Kunz & Califano, ApJL (2018)]

$$\boldsymbol{v}) \doteq f(\boldsymbol{x}, \boldsymbol{v}) - F_{\mathrm{M}}(\boldsymbol{x}, \boldsymbol{v})$$

 $\log |\delta f_{\boldsymbol{k},\boldsymbol{m}}|^2$

-5,

-13.

[Cerri, Kunz & Califano, ApJL (2018)]

(at sub-ion scales)

-5.

-13.

[Cerri, Kunz & Califano, ApJL (2018)]

Solution real- and velocity space are tightly entwined in cascading δf → "phase-space cascade" Solution phase-space cascade of δf induced by turbulent e.m. fluctuations is "6D-anisotropic"

$$\boldsymbol{v}) \doteq f(\boldsymbol{x}, \boldsymbol{v}) - F_{\mathrm{M}}(\boldsymbol{x}, \boldsymbol{v})$$

 $\log |\delta f_{m{k},m{m}}|^2$

-5.

-13.

-21.

Cascade of δf in "reduced-dimensionality" phase space

> 3D e.m. hybrid-gyrokinetics: 3D-2V)

[Kawazura et al., PNAS (2019)]

4D phase space:

2D-2V: electrostatic gyrokinetics (GK) [Tatsuno et al., PRL (2009), PoP (2012); Banon-Navarro et al., PRL (2011); Cerri et al., PoP (2014b)] **3D-1V:** reduced-GK [Hatch et al., JPP (2014); Loureiro et al., JCP (2016); Meyrand et al., PNAS (2018); Gobrunov & Teaca, JCP (2023); Zhou et al., PNAS (2023)] **3D** phase space: **2D-1V** (e.s. reduced-GK) [Watanabe & Sugama, PoP (2004)]

- 2D phase space: 1D-1V (Vlasov-Poisson) [Parker & Dellar, JPP (2015); Celebre et al., PoP (2023)]

		in human human
	į	- muri

Nonlinearities [turbulence] in kinetic systems intrinsically entwine [the cascade of] the fluctuating fields [δE(x) and δB(x)] in real space with [a cascade of] fluctuations of the distrubtion function [δf(x,v)] in the whole [six-dimensional] phase space.
 we call this a "phase-space cascade"

Such phase-space cascade is likely anisotropic as a result of a combination of various processes simultaneously at play (with different timescales that also depend on the scale); and a reduced dimensionality of the phase space may affect these properties.
 but still worth looking at one process at a time and in reduced dimensionality

Phase space is a common (play)ground for our two research communities... ...let's meet there and have fun with nonlinearities!

BACKUP SLIDES

Turbulent heating in the solar wind

Fluctuations' spectra in the HVM simulation

[Cerri, Kunz & Califano, ApJL (2018)]

Generalized scaling for the "ion-entropy cascade" (1)

 $\ell_{\parallel,\lambda} \propto \lambda^{lpha/3}$

[Cerri, Kunz & Califano, ApJL (2018)]

> underlying idea (Schekochihin et al., PPCF 2008):

de-correlation of v_{\perp} -structures due to de-correlated k_{\perp} -fluctuations

> allow *generalised spectral anisotropy*:

> assume *critically balanced KAW cascade*: $\tau_{nl,\lambda} \sim$

1 no particular model odering assumed this far

↓ *gyrokinetic* ordering assumed in the following

> ion-entropy non-linear timescale:

> ion-entropy cascade time:

 $\alpha = 1$ standard KAW anisotropy

 $\alpha = 2$ intermittency-corrected case

 $\alpha = 3$ constant anisotropy

$$\sim au_{\mathrm{KAW},\lambda}^{(\alpha)} \propto \lambda^{1+lpha/3}$$

 $\widetilde{\tau}_{h,\lambda} \sim \left(\frac{\rho_{\rm i}}{\lambda}\right)^{1/2} \tau_{\rm KAW,\lambda}^{(\alpha)}$

weighting of the nonlinear cascade time due to ring-average in GK nonlinearity

 $\tau_{h,\lambda}^{(\alpha)} \sim \left(\frac{\rho_{\rm i}}{\lambda}\right) \tau_{\rm KAW,\lambda}^{(\alpha)} \sim \lambda^{\alpha/3}$

small changes in the non-adiabatic GK response (h_{λ}) that accumulate as a random walk to produce a change of order unity ($\Delta h_{\lambda} / h_{\lambda} \sim 1$)

Generalized scaling for the "ion-entropy cascade" (2)

[Cerri, Kunz & Califano, ApJL (2018)]

> assume *constant entropy flux through scales*:

> derive scalings for non-adiabatic GK response:

> derive *phase-space spectra of ion-entropy cascade*:

$$E_h(k_{\perp}) \propto k_{\perp}^{-(3+\alpha)/3}$$
 $E_h(k_{\parallel}) \propto k_{\parallel}^{-2}$ $E_h(m_{\perp}) \propto m_{\perp}^{-(6+\alpha)/6}$ = 1 standard KAW anisotropy: $k_{\parallel} \propto k_{\perp}^{1/3}$ $E_h \propto k_{\perp}^{-4/3}$ $E_h(m_{\perp}) \propto m_{\perp}^{-7/6}$ = 2 intermittency-corrected case: $k_{\parallel} \propto k_{\perp}^{2/3}$ $E_h \propto k_{\perp}^{-5/3}$ $E_h(m_{\perp}) \propto m_{\perp}^{-4/3}$ = 3 constant anisotropy: $k_{\parallel} \propto k_{\perp}$ $E_h \propto k_{\perp}^{-2}$ $E_h(m_{\perp}) \propto m_{\perp}^{-3/2}$

X X O

$$h_{\lambda}^2/\tau_{h,\lambda}\sim \varepsilon_h=\mathrm{const}$$

$$h_{\lambda}^{(lpha)} \propto \lambda^{lpha/6}$$

accounting for "generalised" spectral anisotropy

δf from a single sub-domain of the HVM simulation

 f_m^2 (black); F_{0m}^2 (red dashed)

