
Monte Carlo Methods for  
Stellar Dynamics

Carl Rodriguez 

University of North Carolina at Chapel Hill 

KITP KineBcs 24 Workshop 



The Problem: Spherical(ish) Star Clusters

Movie by: Inés Rodríguez HsuCredit: ESO/M.-R. Cioni/VISTA

47 Tuc SyntheBc Young Cluster



M30 47 Tuc

" Old ( ) & low metallicity 

" Massive (  to  stars and binaries) 

" Compact ( )

> 12 Gyr

> 105
> 107

Reû
> few pc

Carl     Rodriguez

NGC 3201

Dynamical FormationGlobular Clusters



Milky Way
NASA/Adler/U. Chicago/Wesleyan/JPL-Caltech 

M87
Adam Block/Mt. Lemmon SkyCenter/U. Arizona 

Found in almost all galaxies

Dynamical FormationGlobular Clusters are everywhere



Collisional Systems

Credit: ESO/M.-R. Cioni/VISTA
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Collisional Systems

CLR et al. (2022) ApJSS, 258, 2



The Key Questions

Credit: ESO/M.-R. Cioni/VISTA

47 Tuc Macrophysics QuesBons
Global EvoluBon of Star Clusters

"Bulk ProperWes (radii, masses, etc) 

globular clusters and galacWc nuclei 

"FormaWon and survival 

"DestrucWon (Wdal streams)

Microphysics QuesBons
ProducBon of Unique Stars and Binaries

"Dynamical processes create and 

modify binary stars 

"Physical Collisions



∼ 10 Myr
> 10 Myr

Dynamical Friction
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Dynamical Friction

Massive parWcles will 

<mass segregate= into center 

of the cluster



M V

Massive parWcles will 

<mass segregate= into center 

of the cluster

Dynamical Friction

> 100 Myr



Chaotic InteractionsDynamical Binary Formation

Energy/Angular Momentum

High central density faciliWes three-

body encounters which form binaries 

from single stars and black holes



Chaotic InteractionsDynamical Binary Formation



Chaotic InteractionsHeggie9s (1975) Law
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harden hard binaries and   

soaen soa binaries
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On average, three-body encounters 

harden hard binaries and   

soaen soa binaries

Hard binary: Ebin =
Gm1m2

2a
>

1

2
ïmv

2ð

Heggie9s (1975) Law

Hard binaries conWnue to harden unWl 

they are either ejected from the cluster, 

merge inside the cluster, or the cluster 

disrupts around them

A single hard binary can have the same 

binding energy as the enWre cluster!
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GravitaBonal N-body Problem

Core issues: 

1.Close encounters are the whole point! 

2.Wide range of Wmescales 

3.Scales as N2

1/r ³ >

dt ³ 0

�t > 100 Myr

�t > 100 hours



Holmberg (1941) 

ApJ 94, 3

The First N-body Integrators
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The First N-body Integrators

Holmberg (1941) 

ApJ 94, 3



GravitaBonal N-body Problem

Heggie and Hut 2003

2016

106 Wang et al.



GravitaBonal N-body Problem

Wang et al. (2016) 

MNRAS, 458, 2

SWll took  months of wall Wme!> 13
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GravitaBonal N-body Problem

Core issues: 

1.Close encounters are the whole point! 

2.Wide range of Wmescales 

3.Scales as N2

1/r ³ >

dt ³ 0

�t > 100 Myr

�t > 100 hours

Ways to OpBmize 

1.Hardware opWmizaWon 

2.Algorithmic enhancements 

" e.g. FMM, which scales as  

"Mukherjee el al.+CLR (2021,2023) 

3.Simplifying assumpWons via physics

)(N)

GRAPE (Gravity Pipe)



Monte Carlo N-body Problem

Three Core 

AssumpBons: 

1.Boltzmann9s 

Molecular Chaos 

AssumpWon 

2. Assume large  

(Fokker-Planck 

approx.) 

3.Spherical Symmetry 

N

N s 104

Trelax j
0.1N

log N
Tdyn k Tdyn
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Monte Carlo N-body Problem

ParWcles experience 

two-body encounters as 

they orbit in the cluster
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Monte Carlo N-body Problem
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Monte Carlo N-body Problem

In reality each encounter should have a 

unique mass and relaWve velocity drawn 

from the distribuWon funcWon

ï(�vi)
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2
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For , Fi = F( ÷ri, ÷vi, mi) Ff = F( ÷rf, ÷vf, mf)
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Monte Carlo N-body Problem
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How do we calculate ?  

Assume our nearest star ( ) 

is a fair draw from 
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Monte Carlo N-body Problem

How do we calculate ?  

Assume our nearest star ( ) 

is a fair draw from 

ïïïF

i + 1

F( ÷r, ÷v, m)

sin2 (
³e

2 ) =
2ÃG2(mi + mi+1)
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1.Assume spherical 

symmetry, and that 

stars can be 

represented as 

spherical mass shells

PotenWal is trivial; 

for  ri < r < ri+1

§(r) = − G
Mi

r
+

N

3
j=i+1

mj

rj

2.Perform pair-

wise encounters 

between parWcles 

sorted by 

increasing radius 

Can also consider 

strong encounters, 

compuWng 

 

between neighboring 

stars and binaries

Pstrong = nwÃ�T



Hénon9s method in pracBce

3.Get new posiBons in 

spherical cluster 

potenWal

Energy equaWon: 

 

     

Q(r) =

2E − 2§(r) − J2/r2

P(r)dr =
dt

T
=

dr/ |vr |

+
rmax

rmin

dr/ |vr |

Then just sample orbits 

from radius distribuWon

Where vr = Q(r)



Hénon9s method in pracBce

3.Get new posiBons in 

spherical cluster 

potenWal

Energy equaWon: 

 

     

Q(r) =

2E − 2§(r) − J2/r2

P(r)dr =
dt

T
=

dr/ |vr |

+
rmax

rmin

dr/ |vr |

Then just sample orbits 

from radius distribuWon

Where vr = Q(r)

4. Sort parWcles 

by increasing 

radius, 

recompute 

potenWal, back 

to step 1

Two points: 

1. SorWng is  

complexity 

2. Monte Carlo 

sampling is used in 

two diûerent 

places

N log N



Chaotic InteractionsCluster Monte Carlo Code, CMC

CumulaWve eûect of many 

two-body encounters 

modeled as single 

eûecBve encounters

PosiWons and 

velociWes sampled 

from orbits  

in spherical 

potenWal 

(i.e. Fokker-Planck 

ApproximaBon)

Strong 

Encounters

Scatterings

Dynamical Interactions

Hénon9s method allows us 

to simulate massive, dense 

star clusters ( )  with 

all the relevant physics

N > 107

Stellar Evolution



Forming Black Hole Binaries
Carl  Rodriguez

https://clustermontecarlo.github.io/https://cosmic-popsynth.github.io/

Chaotic InteractionsStellar Evolution + Dynamics

Single and binary stellar 

evoluWon with COSMIC

Dynamical Cluster EvoluWon 

with CMC

CLR et al. (2022) ApJSS, 258, 2Breivik + CLR et al. (2020) ApJ, 898, 71
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Cool& does it work?

Wang et al. (2016) 

MNRAS, 458, 2

CLR et al. (2022) MNRAS, 463, 2109

N-body  months of wall Wme! 

Monte Carlo  days

> 13

> 2


