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1. The averaging principle

Consider motion in a near-integrable Hamiltonian with n degrees of freedom,

H(J,θ) = H0(J) + εH1(J,θ). (1)

where (J,θ) are action-angle variables in the unperturbed Hamiltonian and ε� 1. Equations

of motion are

J̇ = −∂H
∂θ

, θ̇ =
∂H

∂J
. (2)

To lowest order in ε

J = const, θ = θ0 + Ωt, Ω =
∂H0

∂J
. (3)

To first order the actions and angles have oscillatory terms of relative amplitude ε and

frequency of order Ω.

SupposeH0 is independent of k of the n actions (“slow” actions); thusH0 = H0(J1, . . . , Jn−k)

(the “fast”actions). The averaging principle consists of the replacement of H1 by

H1(J, θn−k+1, . . . , θn) =
1

(2π)k

∫
dθ1 · · · dθn−kH1(J,θ). (4)

In words, H1 is the average of H1 over the fast angles. Since H1 is independent of the fast

angles, the fast actions are all conserved and the system is reduced from n degrees of freedom

to k degrees of freedom.

Arnold (1989, p. 292) has commented: “this principle is neither a theorem, an axiom,

nor a definition, but rather a physical proposition, i.e., a vaguely formulated and, strictly

speaking, untrue assertion.”

2. The averaging principle in quasi-Keplerian systems

The averaging principle is relevant to planetary systems, triple star systems, and to

nuclear star clusters surrounding supermassive black holes (see Fouvry’s talk on vector res-

onant relaxation, which is an example of secular effects in such systems). The difference is

that nuclear star clusters have far more bodies (106 instead of ∼ 10) and the bodies are on

much more eccentric and inclined orbits.

The Hamiltonian is the standard N-body Hamiltonian

H =
N∑
i=1

(
1
2
v2i −

GM

ri

)
−

N∑
i=1

∑
j<i

Gmimj

|ri − rj|
(5)
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where mi � M . Although this has 3N degrees of freedom we will often focus on the case

where we follow only one body subject to fixed perturbations.

H = 1
2
v2 − GM

r
+ εΦ(r, t). (6)

In the Kepler problem each planet has three actions

J1 =
√
GMa, J2 = J1(1−

√
1− e2), J3 = J1

√
1− e2(1− cos I) (7)

where a, e, I are the semimajor axis, eccentricity, and inclination. For planets e and I are

small, so

J2 ' 1
2
J1e

2, J3 ' 1
2
J1I

2. (8)

The unperturbed or Kepler Hamiltonian is

H0 = −GM
2a

= −G
2M2

2J2
1

(9)

Thus H0 depends only on J1 so Ω2 = Ω3 = 0. Thus J2 and J3 are slow actions.

This means we have to treat terms in H1 that depend on θ1 differently from terms that

do not. Let

H1 =
1

2π

∫
dθ1H1(J,θ). (10)

Since H1 is independent of θ1,

J̇1 = −∂H1

∂θ1
= 0. (11)

In the solar system this implies that the semimajor axes of the planets are constant (fractional

change in Earth’s semimajor axis is only a few parts in 10−5).

On the other hand

J̇2,3 = − ∂H1

∂θ2,3
= const. (12)

In the solar system this implies that the eccentricities and inclinations grow without limit.

This was the dark matter problem of the eighteenth century. Do the variations in the

orbits gradually grow, leading eventually to the catastrophic disruption of the solar system?

This question has fascinated physicists and mathematicians since the time of Newton.

Newton apparently believed that the perturbations did grow, stating in his book Opticks in

1730 that the “irregularities” in the solar system arising “from the mutual actions of planets
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upon one another” would gradually grow until the solar system “wants a reformation,” that

is, until God intervenes to restore order.

This is the point of view of a theist, i.e.,

Theism: God exists, and continually interacts with humans and the known universe via

methods of divine intervention.

Deism: God exists and created the universe but theeafter left it alone and does not

interact with humans or the known universe.

Leibniz was a deist. He believed that the perfection of God required the perfection

of the solar system, and complained in 1715 that “according to [Newtons] doctrine, God

Almighty wants to wind up his watch from time to time . . . he had not, it seems, sufficient

foresight to make it a perpetual motion.”

The controversy between Newton and Leibniz was influenced by observations of Jupiter

and Saturn dating back to Johannes Kepler in 1625, which seemed to show that their semi-

major axes were changing linearly in time.

The actions J2.3 are nearly zero and using polar coordinates near zero is generally a bad

idea. Carry out a canonical transformation from J2, θ2 to

q2 =
√

2J2 cos θ2, p2 =
√

2J2 sin θ2, (13)

with a similar transformation from J3, θ3 to q3, p3. The generating function is S =

−1
2
p22 cot θ2.

The advantage of these variables is that (a) analogous to the transformation from polar

to Cartesian coordinates, they avoid a singularity near the origin. (b) p2 and q2 are of order e

which is small, and p3 and q3 are of order I, which is small. (c) The interaction Hamiltonian

H1 can be expanded in a Taylor series in the p’s and q’s.

Therefore expand H1 as a power series in the q’s and p’s and keep only terms up to

quadratic order.

H1 =
∑
i,j

Gmj

aj
[
1

8
αijb

1
3/2(αij)(q

2
2i + p22i + q22j + p22j)−

1

4
αijb

2
3/2(αij)(q2iq2j + p2ip2j)], (14)

plus terms in q3i, p3i where

bms (α) =
2

π

∫ π

0

dφ cosmφ

(1− 2α cosφ+ α2)s
. (15)

and αij = ai/aj. This is Lagrange-Laplace theory.
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Any quadratic Hamiltonian can be solved analytically. It is found that (a) All linear

terms in the Hamiltonian vanish. (b) The equations of motion are linear and homogeneous;

(b) the q’s and p’s oscillate with a frequency of order εΩ; (c) the amplitudes of the oscillations

are of the same order as the initial eccentricities and inclinations (and therefore not large

enough to disrupt the solar system).

This still left unresolved the apparent drift in semimajor axes of Jupiter and Saturn.

Then in 1785, Laplace showed that this arises because of a near-resonance between the

two planets: their mean motions are related by 2nJupiter ' 5nSaturn. This near-resonance,

sometimes called the Great Inequality, leads to oscillations in the mean motions with a

period of about 900 years, and this variation appeared nearly linear over the 150 years

between Kepler and Laplace.

Lagrange-Laplace theory provided an early approximate “proof” that the solar system

was stable. Many other authors made analytic proofs but these always involved approxima-

tions. Poincaré said “Those who are interested in the progress of celestial mechanics...must

feel some astonishment at seeing how many times the stability of the Solar System has been

demonstrated. Lagrange established it first, Poisson has demonstrated it again, other demon-

strations came afterward, others will come again. Were the old demonstrations insufficient,

or are the new ones unnecessary?”

The actual “proofs” come from numerical integration of the planetary orbits over timescales

of 5–10 Gyr. This is a hard problem for several reasons: (a) it requires ∼ 1012 timesteps

and so is very CPU-intensive; (b) impossible to parallelize because it’s an intrinsically serial

problem; (c) must manage roundoff error. These problems have now been solved and you

can check the stability of the solar system on your laptop in a few days.

The answer is that the system is stable but chaotic, with a short Liapunov time of only

107 years.

3. Milankovich equations

The Lagrange-Laplace theory is only valid for small eccentricity and inclination and we

need a theory that works for arbitrary eccentricity and inclination. In principle this can

be done by writing H1(J1, J2, J3, θ2, θ3, t) and solving Hamilton’s equations but (a) these

equations are complicated and lack any natural structure; (b) they are ill-defined when the

eccentricity e or inclination I is zero, or when e = 1. These disadvantages can be remedied

in a vector-based formalism for secular theory,
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Since r and v form a canonical coordinate-momentum pair, their Poisson brackets are

{ri, rj} = 0, {vi, vj} = 0, {ri, vj} = −{vi, rj} = δij, (16)

The angular momentum per unit mass L = r× v = εijkn̂irjvk, where εijk is the permu-

tation symbol; throughout this section the summation convention is in force. It is straight-

forward to show that the Poisson brackets of the components of angular momentum are

{Li, Lj} = εijkLk. (17)

Since |L| = [GMa(1− e2)]1/2, it proves useful to define a dimensionless angular momentum

j ≡ L

(GMa)1/2
= (1− e2)1/2L̂, (18)

whose magnitude varies between 0 and 1. It is straightforward to show that equation (17)

can be rewritten as

{ji, jj} =
1

(GMa)1/2
εijkjk. (19)

Define the eccentricity vector:

e =
v × (r× v)

GM
− r

r
. (20)

It is straightforward to show that e is a fixed vector whose magnitude is the eccentricity and

that points towards pericenter.

The orbit-averaged Hamiltonian H1 is a function of the size and shape of the orbit,

and possibly the time—it’s simply the gravitational potential energy of an elliptical wire in

the external field. We can specify the orbit by the semimajor axis a and the two vectors j

and e. Thus we can write the orbit-averaged Hamiltonian as H1(a, j, e, t). Note that these

arguments contain seven phase-space variables (a and the three components of each of the

two vectors), but only five are independent, because they are related by the constraints

j · e = 0, j2 + e2 = 1. (21)

It is straightforward, though tedious, to show that the Poisson brackets of the compo-

nents of the eccentricity vector are

{ei, ej} =
1

(GMa)1/2
εijkjk. (22)
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Similarly we can show that

{ji, ej} = {ei, jj} =
1

(GMa)1/2
εijkek. (23)

The elegant relations (19), (22) and (23) arise because the symmetry group of the Kepler

problem is the group of rotations in 4-dimensional space, SO(4).

Let z ≡ (r,v). Then Hamilton’s equations can be written

ż = {z, H}. (24)

The rate of change of any function f(z, t) along a trajectory determined by Hamilton’s

equations is
d

dt
f [z(t), t] =

∂f

∂t
+ {f,H}. (25)

The time evolution of ji under the influence of H1 is given by equation (25),

dji
dt

= {ji, H1}. (26)

Then from the chain rule

dji
dt

= {ji, jk}
∂H1

∂jk
+ {ji, ek}

∂H1

∂ek
+ {ji, a}

∂H1

∂a
. (27)

Using the evaluations of the Poisson brackets in equations (19) and (23), the result simplifies

to
dji
dt

=
1

(GMa)1/2
εikmjm

∂H1

∂jk
+

1

(GMa)1/2
εikmem

∂H1

∂ek
. (28)

This can be rewritten in vector notation as

dj

dt
= − 1

(GMa)1/2

(
j× ∂

∂j
H1 + e× ∂

∂e
H1

)
, (29)

where ∂f/∂j is the vector having components (∂f/∂j1, ∂f/∂j2, ∂f/∂j3) for any function

f(j1, j2, j3). Similarly, the time evolution of the eccentricity vector is given by

de

dt
= − 1

(GMa)1/2

(
e× ∂

∂j
H1 + j× ∂

∂e
H1

)
. (30)

Equations (29) and (30) are the Milankovich equations.

It is straightforward to show that the Milankovich equations conserve j · e and j2 + e2.

Thus if the constraints (21) are satisfied by the initial conditions, they continue to be satisfied

for all time. Because of this property the formula for a given Hamiltonian in terms of j and e

is not unique—for example, H1 = j2 could also be written H1 = −e2 or H1 = j2 + e · j—but

the trajectories determined by the Milankovich equations are the same for all of these.
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4. ZLK oscillations

Consider a three-body problem consisting of a binary star with a planet orbiting one

member of the binary. System must be hierarchical since otherwise it will not be stable.

The planet is a test particle and has semimajor axis a; on a circular orbit. The com-

panion star has semimajor axis ac � a. The inclination of the planet orbit to the binary

star orbit is I (draw a diagram, including n̂c). Then orbit-average over both the orbit of

the companion and the orbit of the planet. Because a � ac only the quadrupole term is

important. The Hamiltonian is

H1 =
GMca

2

8a3c(1− e2c)3/2
[15(e · n̂c)2 − 6e2 − 3(j · n̂c)2]

=
GMca

2

8a3c(1− e2c)3/2

[
6J2

2

J2
1

− 3J2
3

J2
1

+ 15

(
1− J2

3

J2
2

− J2
2

J2
1

+
J2
3

J2
1

)
sin2 θ2

]
. (31)

Result is independent of θ1 because of averaging, so J1 and semimajor axis are conserved.

Result is independent of θ3 by accident so J3 is conserved. Therefore there is only one degree

of freedom. If initial eccentricity is zero and initial inclination is I0 then conservation of the

Hamiltonian implies

C = 5

(
1− cos2 I0

1− e2

)
e2 sin2 ω − 2e2 (32)

is a constant. Set x = e cosω, y = e sinω, then near e = 0

C = 5 sin2 I0y
2 − 2x2 − 2y2. (33)

Stable if and only if | sin I0| ≤
√

2
5

which requires that I0 is less than 39◦ or more than 141◦.

This instability leads to von Zeipel-Lidov-Kozai oscillations. These have at least

two remarkable features:

1. The instability is independent of the mass or distance of the companion, so long as

(a) there are no other perturbing effects on the planet (e.g., general relativity) and (b) the

instability time is short compared to the age of the universe.

2. If the initial inclination is close to 90 degrees then the ZLK oscillation carries the

eccentricity to nearly unity and there can be a collision with the star or the planet can come

close enough that tides damp the orbit.

ZLK oscillations underpin one of the two main theories for how planets are formed close

to their host star (hot Jupiters).


