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Gravity VS. plasma
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single kind of charge opposite charges
equal inertial and gravitating mass different charge/mass ratio

no screening; Jeans length comparable Debye screening length much smaller
to the size of the system than the size of the system

In both cases n\3 > 1 = nearly collisionless dynamics;

non-Maxwellian and possibly anisotropic velocity distributions.



Characteristic scales of self-gravitating systems

galactic nuclei

Size
Velocity

Dynamical time
T = (47 G p)~1/2

Relaxation time
Tet ~ N7/InA

star clusters galaxies

N ~ 103 — 107 N ~10° — 10"

B stars: ~ 0.1 — 10 kpc
~1-10pc halo: ~ 1 —100 kpc
Cokms 10 200 ks
~ 106 yr ~ 107 yr

dynami:’ally old

~ 10° — 10%0 yr > 1010 yr

thermodynamically evolving

1pc
1 Myr

~ 0.98km/s



Key features of kinetics of self-gravitating systems
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But: stars don't move on straight lines =

better use orbits J and locations on the orbit 0 as phase-space variables.

(instead of velocity and position as in spatially uniform plasma).

Kinetic equation for f(x, v, t):
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But: stars don't move on straight lines =

better use orbits J and locations on the orbit 0 as phase-space variables.

(instead of velocity and position as in spatially uniform plasma).

Kinetic equation for f(x, v, t):

For a phase-mixed system, f = f(J) only, and could be almost arbitrary.

Solution of the CBE + Poisson equation: p=[[[f(I)dv
J=J(x,v; )

V20 =471 Gp



Key features of kinetics of self-gravitating systems

Kinetic equation for f(x, v, t): % +v % - g—i) gf = Ceanlf].

But: stars don't move on straight lines =
better use orbits J and locations on the orbit 0 as phase-space variables.
(instead of velocity and position as in spatially uniform plasma).

For a phase-mixed system, f = f(J) only, and could be almost arbitrary.
Solution of the CBE + Poisson equation: p=[[[f(d)dv

Alternative methods for constructing
equilibrium models: p(x) + ®(x) = f(J) J=J(x,v; ®)
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Action—angle variables in galactic dynamics
Typically we consider spherical or axisymmetric potentials.

» radial action J,;
> vertical (or polar) action J,;
» azimuthal action J, = L,

(conserved component of angular momentum).




Action—angle variables in galactic dynamics

Typically we consider spherical or axisymmetric potentials.

» radial action J,;
> vertical (or polar) action J,;

» azimuthal action Jy = L,
(conserved component of angular momentum).

Transformation {x,v} < {J,0}: : ,
» for spherical potentials — (almost) analytic,
only 1d numerical integrals for J,;
» for axisymmetric potentials close to the equatorial plane —
epicyclic approximation (separable motion in R and z);
» —"— Stackel approximation (spheroidal coordinate system);

» most general (but tricky to use): "torus mapping” using Fourier
series for generating functions of the canonical transformation.
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Observational developments in recent years
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_:'/@;/é gaia n many groun.d—based

?/‘/*“S' spectroscopic surveys
proper \ line-of-sight ages, chemical
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Observational developments in recent years

-
many ground-based
2= gaia + """ °
s spectroscopic surveys

;W

proper line-of-sight ages, chemical
distances g

motions velocities composition

O(10°) O(108) O(107) O(10°)

Available data: significant part of the Galactic disc (~ few kpc);
central region, outer halo, some satellites...

Challenges: patchy coverage; not all objects have 6d phase-space coords...



Recent discoveries: Galactic assembly history
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Recent discoveries: Galactic assembly history
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Recent discoveries: Galactic assembly history

Challenges:

— overlapping debris from multiple progenitors;
— incomplete phase mixing;

— limited spatial coverage; ;
— blurring of substructures by later perturbations; 2
— dynamical creation of structures; E
— lack of consistent nomenclature...

~1000 0 1000 ~1000 0 1000

L. [kpc km/s| L. [kpe km/s]
bar-induced stripes [Dillamore+ 2023, 2024]
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Recent discoveries: imprint of Galactic bar and spiral arms

Velocity distribution in the equatorial plane (U, V') contains various structures associated
with resonantly trapped orbits [Dehnen 2000; Quillen & Minchev 2005].

In a more extended region, trapped orbits show up as lines in the J, — L, plane
[e.g., Sellwood 2010; Binney 2018; Monari+ 2017, 2019; Trick+ 2019; Hunt+ 2019].

Their location depends on the pattern speed of the bar Qp, and spiral arms €.
A slowing-down bar transports trapped objects outwards [e.g., Dillamore+ 2024]
and creates age-dependent structures in the resonant islands [e.g., Chiba+ 2021].
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Recent discoveries: radial migration and disc heating
Stars do not stay at the same near-circular orbits where they were born due to a

combination of two effects [Sellwood & Binney 2002; Rogkar+ 2008; Min

— radial migration (“churning” — change in L, while conserving J,);
— heating (“blurring” — diffusion in J,).

chev & Famaey 2010]:

Mechanisms: "

— resonances with the bar and spiral arms; o
EE

— molecular clouds and other massive perturbers; B0

— external perturbations (e.g., satellite flybys).

Churning appears to be much stronger than blurring.

Example Model 1 Example Model 2 Best Fit Milky Way
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[Frankel+ 2020]
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Recent discoveries: vertical perturbations in the Galactic disc
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[Li & Shen 2019]

Leading theory: ripples after the impact of a mas-
sive satellite (implying Sgr dSph) through the disc
[Widrow+ 2012; Laporte+ 2018,2019; Binney & Schénrich 2018;
Li & Shen 2019; Bland-Hawthorn & Tepper-Garcia 2021, etc.]

Caveat:

Sgr was likely not massive enough at
the time of the previous passage through the disc
(1 Gyr ago) [Vasiliev & Belokurov 2020; Bennett+ 2022].

Counter-caveat: Sgr may have excited long-lived
oscillations in the MW halo, which in turn perturb
the disc [Grand+ 2022].



Recent discoveries: vertical perturbations in the Galactic disc
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Recent discoveries: precessing warp in the outer Galactic disc

[pdA1Z

The warp is a coherent large-scale vertical perturbation of the disc beyond ~ 10—12 kpc.

Formation theories:
— impact of satellites (Sgr, LMC);

— misalignment between the disc and the dark halo;
— cold gas accretion from a misaligned direction.

Challenges:

— disagreement in amplitude and precession rate betw
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Recent discoveries: LMC—-Milky Way encounter
The Large Magellanic Cloud is only 5 — 10x less massive than the Milky Way, and just
passed its pericentre at 50 kpc. The LMC-induced perturbation is twofold:

1. Stars in the vicinity of the moving LMC are deflected into a trailing density wake,
creating a dynamical friction force [Chandrasekhar 1942].
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The Large Magellanic Cloud is only 5 — 10x less massive than the Milky Way, and just
passed its pericentre at 50 kpc. The LMC-induced perturbation is twofold:

1. Stars in the vicinity of the moving LMC are deflected into a trailing density wake,
creating a dynamical friction force [Chandrasekhar 1942].

2. The two galaxies move around the common centre of mass, but not as rigid bodies.

In the MW-centred reference frame, outer halo appears to move up (dipole perturbation).
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N-body sims [Garavito-Camargo+ 2020] perturbation theory [Rozier+ 2022]



Summary

— Many interesting problems in Milky Way dynamics can be addressed
with the methods from kinetic theory
— Degeneracies in explaining individual features = need a holistic view
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