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Perpendicular flows require charge transport

• How does charge move across 
field lines?
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When can waves move charge across field lines?

• Infinite plasma slab with B || z
• Electrostatic high-frequency wave in y
• Is charge moved (in x) by wave?

• This would produce a x-directed E field, 
driving ExB flow along y
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Resonant particles clearly move across field
• Resonant particles absorb momentum 
• Moves gyrocenter in Δ"×$ direction
• Basis for alpha channeling instability
• Coupled diffusion in energy / space
• Hot alpha particles give up energy to 

wave while leaving the plasma
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Astrophysics relevance: high-eccentricity orbit 
encountering local corotation resonance?
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KITP Insertion: Diffusion Theory with Dephasing
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Resonant particles “clearly” move across field
• Resonant particles absorb momentum 
• Moves gyrocenter in Δ"×$ direction
• Basis for alpha channeling instability
• Coupled diffusion in energy / space
• Hot alpha particles give up energy to 

wave while leaving the plasma
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Diffusion Requires Phase Memory Loss
• Landau resonance—not a cyclotron 

resonance
• Bernstein-Landau paradox
• Requires sufficient “kick” to forget phase 

after one gyration
• “Stochastic Threshold”—Karney 1979

• % = 'Δ( = )ΩΔ( + ”kick”
• Once “kick” is O(1) on one orbit, 

cyclotron resonance is lost
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Nonlinear Diffusion Coefficient

• Karney calculated diffusion coefficient laboriously from jump moments
• This formed a diffusion equation in perpendicular energy space
• Fisch, Rax (1992) included coupled gyrocenter-energy diffusion

• Nonstandard approach; normally linear theory -> quasilinear theory
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Linear Theory
• Take particles to be “locally unmagnetized”
• Start with kinetic unmagnetized theory of quasilinear diffusion
• i.e. start with theory of bump-on-tail instability / Landau damping

• Transform theory to gyrocenter coordinates
•  

• Invoke dephasing
• Demand 
• Average all equations [linear evolution and quasilinear diffusion] over 0

• Targets:
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Nonresonant Di↵usion in Alpha Channeling
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(Dated: June 29, 2021)

The gradient of fusion-born alpha particles that arises in a fusion reactor can be exploited to
amplify waves, which cool the alpha particles while di↵usively extracting them from the reactor. The
corresponding extraction of the resonant alpha particle charge has been suggested as a mechanism
to drive rotation. By deriving a coupled linear-quasilinear theory of alpha channeling, we show that,
for a time-growing wave with a purely poloidal wavevector, a current in the nonresonant ions cancels
the resonant alpha particle current, preventing the rotation drive but fueling the fusion reaction.

Introduction: A particle gyrating in a magnetic
field with a velocity v? greater than the phase velocity
vp ⌘ !r/k? of an electrostatic wave will become Landau-
resonant at some point in its orbit, allowing for e�cient
wave-particle energy exchange. Each time the parti-
cle energy changes, its gyrocenter position also changes,
leading to di↵usion on a 1D path in the 2D energy-
gyrocenter coordinate space [1, 2]. If, along the path,
there are more particles at higher than lower energy, the
di↵usion on average cools particles, and the wave ampli-
fies. This e↵ect is known as alpha channeling, so named
because is cools and extracts alpha ash from the hot core
of a fusion reactor, and channels their energy into wave
power useful for current drive [1, 2] or ion heating [3–5].

For alpha channeling in a slab geometry, the di↵usion
path slope in this energy-gyrocenter space has the simple
form @X/@K = k⇥b̂/m↵!⌦↵, whereK is the perpendic-
ular kinetic energy, X is the gyrocenter position, m↵ and
⌦↵ are the alpha particle mass and gyrofrequency, and
! and k are the wave frequency and wavenumber. Thus,
the condition for wave amplification from channeling is:
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F↵0 > 0, (1)

where F↵0 is the zeroth-order distribution function in
energy-gyrocenter space.

What remains unknown is whether or not the alpha
particles carry net charge out of the plasma as a result
of the wave-induced di↵usion. If charge is in fact carried
out, then alpha channeling can be used drive E ⇥B ro-
tation in the plasma, providing an advantageous mecha-
nism for shear rotation drive and centrifugal confinement
in mirror fusion reactors [6]. Understanding whether such
schemes are possible at all requires evaluation of the e↵ect
of the wave on the nonresonant particles, which has never
been examined for alpha channeling. Such reactions in
the nonresonant particles are extremely important in en-
forcing momentum and energy conservation [7, 8], mak-
ing theories that ignore them liable to error.

The reason the nonresonant response has proved elu-
sive is that there is no existing linear theory of alpha
channeling. Typically, a coupled linear wave and quasi-
linear particle system is necessary to calculate the non-
resonant particle response. The elusivity of the linear
theory is related to the fact that Landau damping can-

not be derived from the magnetized dispersion relation,
a conundrum sometimes termed the Bernstein-Landau
paradox [9, 10]. Derivation of the di↵usion thus requires
a nonlinear calculation, which allows for stochastic di↵u-
sion of the particle throughout phase space above a cer-
tain wave amplitude (see supplementary material, which
includes Refs. [11–13]) at which Landau-resonant parti-
cles dephase from the wave [14–18]. This dephasing ef-
fectively destroys the gyrophase-dependent structure of
the resonant particle distribution.

In this Letter, we show that a linear-quasilinear system
can be derived by assuming this wave-particle dephasing,
which we do by transforming the familiar unmagnetized
kinetic theory to gyrocenter coordinates, and then forc-
ing the resonant particle distribution to be independent
of gyro-angle. To show that the system describes alpha
channeling, we show that it recovers both the amplifica-
tion condition (Eq. (1)) and the nonlinear di↵usion coef-
ficient [15] for channeling by lower hybrid (LH) waves.

Treating the channeling problem in this way positions
us to answer the question of whether alpha channeling ex-
tracts charge from the fusion reactor. We find that for the
initial value problem, where an electrostatic wave with
purely poloidal wavenumber grows in time, the charge
flux from the resonant alphas is canceled by an equal
and opposite charge flux in the nonresonant particles, so
that no reactor charging occurs. We also determine which
particles carry this nonresonant return current, in both
single- and multi-ion-species plasmas. For LH waves, the
nonresonant return current is carried exclusively by fuel
ions, so that alpha channeling has the added benefit of
fueling the fusion reaction while extracting alphas.

Linear theory: For any electrostatic wave, the dis-
persion relation obtained by linearizing and Fourier
transforming Poisson’s equation can be expressed as:

0 = 1 +
X

s

Ds; Ds ⌘ �
4⇡qs
k2

ñs

�̃
, (2)

where qs and ns are the charge and density of species s,
� is the potential, and tildes denote Fourier transforms.
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the same coordinate transformation. From unmagnetized
quasilinear theory, we have for a single wave mode [8, 19]:
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where W (y) = E0(y)2/16⇡ and E0(y) are the wave elec-
trostatic energy density and amplitude at y respectively.
The di↵usion equation (15) transforms as:
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where D
ij

X is determined from D
ij

x by the same tensor
transformation law as for the metric in Eq. (11).

Performing the coordinate transformation, taking F↵0

independent of ✓, and averaging Eq. (17) over ✓, we find:
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where the gyro-averaged coordinates X̄ ⌘ (K,Y ), and:
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with v? =
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This integral can be evaluated with the u-substitution
u = sin ✓. As discussed in Ref. [19], Ia

d
then consists of

two terms: one from the“1” and the pole, corresponding
to resonant particles, and one from the i!i@/@!r and the
principle value, corresponding to nonresonant particles.
We will focus on the resonant di↵usion, which gives at
Y

⇤ = y � vp/⌦↵:
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Eq. (22) is the same as Karney’s [15] di↵usion coe�cent
in v? in the limit of large kx⇢ as used in [2] (see supple-
mental material). Furthermore, the di↵usion is seen to
occur along the di↵usion path in Eq. (1), confirming that
this approach recovers alpha channeling.

FIG. 2. Simulated single-particle trajectories in the x-y
plane of (a) hot particles (v0 = 3.5vp) and (b) cold par-
ticles (v0 = 0.03vp) in a growing electrostatic wave. Lines
are particle positions, and triangles are orbit-averaged gyro-
center positions. Axes are normalized to ⇢ps ⌘ !/k⌦s, i.e.
x̃ = x/⇢ps and ỹ = y/⇢ps. The color indicates time, light
to dark. The hot particles di↵use stochastically. The cold
particles have a clearly non-gyrotropic velocity distribution
due to the oscillations, and exhibit a clear shift in gyrocenter
downward.

The di↵usion coe�cient corrects the energy-space dif-
fusion coe�cient in Ref. [1] and Ref. [20]. This discrep-
ancy is discussed in the supplemental material. This er-
ror did not a↵ect the study of alpha channeling in toroidal
geometry due to ion-Bernstein waves (IBWs) [4, 21],
which relied on a di↵erent di↵usion coe�cient from orbit-
averaging the cyclotron-resonant response [22, 23].
Nonresonant Reaction: Having established that the

linear-quasilinear system recovers alpha channeling, we
are now in a position to examine the nonresonant re-
sponse. In contrast to the resonant particles, which re-
main on largely unperturbed gyro-orbits except at the
resonance points (Fig. 2a), and which have their ✓-
dependent structure destroyed by nonlinear e↵ects, the
nonresonant particles experience sloshing motion along
vx only, and thus have a nongyrotropic distribution func-
tion at O(E2) (Fig. 2b).
Thus, instead of transforming the nonresonant di↵u-

sion coe�cient to the coordinates Xi, we find the nonres-
onant response by first calculating the total force density
on species s from the field-particle correlation:

Fsx = qshE1xn1ix. (24)

This approach is equivalent to finding the force from the
full (non-gyro-averaged) quasilinear theory.
Linearizing and Fourier transforming the above gives:
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which can be expressed entirely in terms of �̃ by using
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Channeling Amplification Condition Diffusion Coefficient for Resonant Particles



Linear theory for alpha channeling instability
• Needed linear theory to apply 

general quasilinear theory
• Yields unexpected result:
• Alpha channeling condition is 

same as bump on tail instability!
• Coordinate change between 

gyrocenter and local coordinates f(vy)

vy

vres

[I.E. Ochs and N.J. Fisch, Physical Review Letters, 127(2), 025003 (2021)]. 
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F(X,v⟂)
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Resonant particles clearly move across field

• Is there associated flow drive from this 
resonant particle current?
• “Free” way to drive rotation?

1211/2/2023 Ian Ochs, APS-DPP, Denver
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Do the resonant particles tell the whole story?

• What happens to the nonresonant particles?
• Do they do nothing? Do they create an equal and opposite current?
• Need a self-consistent theory to see if flow drive is possible.

11/2/2023 Ian Ochs, APS-DPP, Denver 13



Outline: do waves drive plasma flows?

• Resonant Particle Diffusion

• Collisional Transport: connection between charge and momentum
• Wave Momentum: Minkowski momentum vs. Field momentum
• Problem Types: Evolution in Time vs. Space
• Theoretical Frameworks: Eulerian Averaging vs. Oscillation Centers

• Large differences in time- vs space-dependent waves
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Collisional transport: a diffusion process
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• Each collision puts particle on new Larmor orbit
• Individual charge moves across field lines



• Equal and opposite reactions from collision 
lead to equal and opposite charge transport
• Why? Canonical momentum – gyrocenter 

relation:

• Leads to:
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Collisional transport: no charge net moves
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Lesson: charge transport requires momentum 
input

• Or: you have to push on the plasma to make it move
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• ExB flow drive requires momentum input
• Electrostatic plane wave has no momentum
• Impossible to drive flow with damped wave?

Transport lesson points to conundrum



What do we mean by “momentum” and 
“damping”?
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Wave momentum is important—but which one?
• Minkowski (“Plasmon”, “GO”)

• Electromagnetic
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Resonant Particles
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All Particles
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Particles
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pEM
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pP
pRP
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“Familiar” example: the bump on tail instability

• Electrostatic (ES) plane wave in 
unmagnetized plasma
• Quasilinear diffusion transfers energy 

from resonant particles into wave

ω/k

Unstable
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Role of momentum in bump on tail instability
ω/k

2211/2/2023 Ian Ochs, APS-DPP, Denver

• Resonant particles lose momentum ΔpR

• Wave gains Minkowski momentum ΔpM= -ΔpR

• Wave has no electromagnetic momentum
• Nonresonant particles enforce conservation: 

ΔpNR = -ΔpR

• We call this the “ponderomotive recoil”

• Wave gains Minkowski momentum, but plasma 
does not lose momentum
• Should have implications for rotation drive

Recoil

Diffusion



• Time: Plane Wave Initial Value Problem – Instabilities

• Space: Steady-State Boundary Value Problem – Ray Tracing, Current Drive 

What is wave damping / amplification?

time

time

11/2/2023 Ian Ochs, APS-DPP, Denver 23



Problem defined, now need to solve it…
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Types of theory
• Eulerian
• Consider Lorentz force on volume of plasma

• Oscillation Center (OC)
• Consider single-particle Hamiltonian / Lagrangian with wave
• Transform to nearby coordinates with slow dynamics (~E2)
• Coordinate transform depends on wave amplitude

is to use a canonical transformation, familiar from Hamilotonian mechanics [120, 143], to transform

from the physical particle coordinates (x,p) to an oscillation center coordinate system (X ,P). This

coordinate system is chosen so as to only include the gradient ponderomotive potential and the

resonant force, without any of the reactive time-dependent terms that can prove confusing. To

second order in wave amplitude, these coordinate systems are linked by the transformation [75]:

X = x+
@S(x,p, t)

@p
� @S(x,p, t)

@x
· @

2S(x,p, t)

@p@p
(7.77)

P = p� @S(x,p, t)
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· @

2S(x,p, t)

@p@x
. (7.78)

Here, S is a quantity that defines a near-identity transformation, so we demand that hSi = 0, at

least at first order.

In these coordinates, the particle evolution for nonresonant particles is governed by the Hamil-

tonian [75]:

H =
p2

2m
+ �(x,p), (7.79)

where we recognized the ponderomotive potential from the variational theory in Dewar’s Eq. (25).

Thus, Dewar has successfully hidden the reactive terms in this formulation of the theory. However,

here, we encounter the di�culty of this formulation of the theory, since the Hamiltonian can only

cleanly be expressed in terms of the old coordinates x,p. Analytically expressing these equations

in terms of X ,P in order to get a set of Hamilton’s equations for the oscillation centers is very

algebraically intense.

Even once this inversion is accomplished, the ponderomotive force cannot be simply identified

with dP/dt = �@H/@X . This is because, in general, what we think of intuitively as the ponderomo-

tive force is either the change in the kinetic momentum mV of the oscillation center, or the change

in the mean kinetic momentum hmnui of the plasma particles. In contrast, as we saw in Sec. 7.2.3,

P represents a canonical momentum with complex dependence on the ponderomotive potential, and

with hPi 6= hpi, as evidenced by Eq. (7.78). Thus, while the Hamiltonian theories hold together

theoretically, and elegantly conserve energy and momentum [75], backing out the physical forces and

currents from the solution in Hamiltonian phase space is a very complex task.

7.3.1 Steady State

Dewar’s formulation suggests something fundamental about ponderomotive forces from steady-state

waves, and their e↵ects on particle orbits. In the absence of a wave, in a plasma confinement

device, the orbit is determined by several constants of motion, including the particle energy and

its momentum along the symmetry directions. For instance, in a periodic cylinder, the orbit would
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[G. W. Kentwell and D. A. Jones, “The time-dependent ponderomotive force,” Physics Reports, 145(6), 319 (1987)]
[R. L. Dewar, “Oscillation center quasilinear theory,” Physics of Fluids, 16(7), 1102, (1973)]
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Each theory is naturally suited to one problem 
type
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Forces only come from 
resonances and gradients

Subtle surface stress terms

Nonresonant reactions 
reside in complicated 

coordinate transformations

Straightforward averagesEulerian

Oscillation
Center

TimeSpace
Type of Problem

Ty
pe
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Start with steady-state boundary value problem
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time



x

y

z, B

Dilute 
Plasma

Ramping 
Density

Uniform 
Region

with 
Resonant 
Particles

Vacuum
Ramping 
Density

Mode 
Conversion 

Layer

Flow is driven in the steady-state boundary 
value problem
• Consider wave that decays in x
• Oscillation Center
• Wave damps on resonant particles in y
• Nonresonant particles: no forces along y
• Net effect: resonant charge extracted in x
• Flow is driven

• Eulerian
• Laborious, but can track momentum 

injection into plasma from edge, giving 
same result

[P.H. Diamond and Y.B. Kim, Physics of Fluids B, 3(7), 1626 (1991)]
[J.R. Myra, L.A. Berry, D.A. D’Ippolito, D. A., and E.F. Jaeger, Physics of Plasmas, 11, 1786 (2004)]
[Z. Gao, N.J. Fisch, H. Qin, and J.R. Myra, Physics of Plasmas, 14, 084502 (2007)]
[I. E. Ochs and N. J. Fisch, Physics of Plasmas, 29, 062106 (2022)]
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What about the initial value problem?
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time



IVP: Eulerian electrostatic quasilinear theory
• Dispersion for ES wave

• Force exerted by field:
Resonant Nonresonant

[I.E. Ochs & N.J. Fisch, Physics of Plasmas 27, 062109 (2020)]
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IVP: Simulations confirm that nonresonant charge 
transport cancels resonant charge transport

Resonant Nonresonant

[I.E. Ochs and N.J. Fisch, Physical Review Letters, 127(2), 025003 (2021)] 
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Electromagnetic Waves: Waves with Momentum
• Same QL procedure, fully kinetic

• Plasma absorbs Poynting flux: 
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Putting this all together and plugging back in to
Eq. (10), we find:
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As shown in Appendix A, this force is the electromag-
netic generalization of the electrostatic force first derived
by Kato31 for parallel forces using the magnetized kinetic
dispersion relation, and later generalized to any electro-
static wave24,27.

Additional insight can be gained by recasting the force
in terms of the temporal and spatial derivatives of the
wave field. Recalling that E,E⇤

⇠ e�·x+!it, we note
that in Eq. 16 we can make the substitutions 2!i ! @/@t
and 2 ! �@/@x. Thus, we can write the force as the
sum of (a) the divergence of a nonresonant stress ⇧Ns,
(b) the time derivative of a nonresonant momentum pNs

(which we term the nonresonant recoil24,26,27), and (c) a
resonant dissipation term FRs:
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In this paper, we will focus primarily on plane waves
which evolve temporally, and so we will largely ignore
the stress term. However, there are a couple points to
note. First, the stress term in this form represents the
electromagnetic force on the plasma volume, and thus
the sum of stress on all species is consistent with the
Maxwell stress tensor (Appendix B). Second, this form
of the stress is of limited utility, since it must be combined

with Reynolds and polarization stress terms24,28,32–35 in
order to yield a meaningful total ponderomotive force.
Unlike the stress term, the resonant dissipation and

nonresonant recoil terms do not su↵er from interpretive
di�culty. As we show in the next section, together, they
conserve momentum between the resonant particles, non-
resonant particles, and electromagnetic field.
Before moving on, however, we note that the nonres-

onant momentum pNs can be rewritten in several ways,
which are useful in di↵erent contexts depending on the
wave polarization and structure of �

s
. Defining the re-

fractive index n = kc/!, we can write:
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III. MOMENTUM CONSERVATION

Having calculated the form of the forces on resonant
and nonresonant particles, we show in this section that
these forces respect momentum conservation. We focus
on the case of a plane wave which grows or damps only
in time, neglecting the -dependent terms in the force.
To demonstrate momentum conservation, we will have

to eliminate the susceptibilities �
s
. To do this, we make

use of the general dispersion relation for an electromag-
netic wave30:
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From this dispersion relation, we can derive two useful
identities.
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[I. E. Ochs and N. J. Fisch, Physics of Plasmas, 30(2), 022102 (2023)]
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In the last line, we used the fact that a ⇥ (a⇥E) is
a Hermitian operator for real a, along with the Taylor
expansion:

ni = Im

✓
kc

(!r + i!i)

◆
⇡ �

!i

!r

nr. (28)

With these two identities, we are in a position to prove
momentum conservation to the relevant first order in ✏.
Taking  = 0 and summing Eq. (16) over all species, we
have:
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Thus, recalling that we can identify 2!i ! @/@t, and
recalling that the time average of two oscillating quanti-
ties Re(E⇥B⇤) ! 2 hE⇥Bi, we have:
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where pEM = SEM/c2 is the electromagnetic momen-
tum. Thus, the momentum gained by the resonant and
nonresonant particles is precisely the momentum lost by
the electromagnetic fields.

IV. RELATIONSHIP TO GENERALIZED MINKOWSKI
MOMENTUM

Having demonstrated momentum conservation be-
tween waves and particles, we can gain additional in-
sight by looking at di↵erent combinations of the mo-
menta. To this end, begin by summing up the nonreso-
nant momenta of each species (Eq. (21)), and then plug
in the zeroth-order dispersion relation from Eq. (25) and
the relationship between B and E fields from Eq. (5).
After a few vector manipulations, including noting that

n ·B = n · (n⇥E) = 0, we find to lowest order:
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We can recognize the first term in brackets as the (neg-
ative) Poynting momentum flux. Thus, the sum of elec-
tromagnetic and nonresonant momentum takes the form:
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This combination of the momentum is useful not only
because it is compact, but also because it is familiar. In
the study of geometrical optics, the wave can be identi-
fied with a “plasmon”36 or “generalized Minkowski”37

momentum. Derived from Noether’s theorem for the
quasi-monochromatic wave Lagrangian, this momentum
appears in the conservation laws governing the evolution
of the wave envelope in the presence of dissipation or
refraction, and can be thought of as the canonical mo-
mentum of the wave photons. It can be written as37:

pM = kI, (37)

where I is the wave action, given for an electromagnetic
wave in a dispersive dielectric by:

I =
1
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This expression can be made more familiar by making
use of the zeroth-order dispersion relation (Eq. (25)) and
the relationship between B and E fields from Eq. (5),
which together imply that E⇤

· ✏ · E = B⇤
· B to lowest

order. Application of the chain rule then to Eq. (38) then
quickly yields:
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We can see that this is the same quantity as in Eq. (36),
so that:

pM = pEM +
X

s

pNs. (41)

Thus, the Minkowski momentum, usually interpreted as
the canonical momentum of a photon which governs the
wave packet evolution, also has a quite intuitive physical
interpretation. Namely, it is the combined momentum
gained by the electromagnetic wave field and the nonres-
onant particles as the wave grows from 0 amplitude.



How much flow do waves drive?
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Steady-State BVP Plane Wave IVP

Drives flow according to wave’s
Minkowski momentum

Drives flow according to wave’s
electromagnetic momentum



What is Minkowski momentum physically?
• Result of electromagnetic Eulerian theory:

• What does this mean?
• Start with still plasma and grow wave from 0 amplitude
• Final sum of electromagnetic and nonresonant particle momenta is 

Minkowski momentum
• Minkowski momentum is the momentum required to “put the wave 

into the plasma”

4

In the last line, we used the fact that a ⇥ (a⇥E) is
a Hermitian operator for real a, along with the Taylor
expansion:
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With these two identities, we are in a position to prove
momentum conservation to the relevant first order in ✏.
Taking  = 0 and summing Eq. (16) over all species, we
have:

X

s

hFsi =
1

4⇡
Re

⇢
!i (�E� nr ⇥ (nr ⇥E))⇥

✓
kr

!r

⇥E⇤
◆

+
1

2
kr

✓
2
!i

!r

E⇤
· nr ⇥ (nr ⇥E)

◆�
(29)

= �
!i

4⇡c
Re (E⇥B⇤ +C) , (30)

where

C ⌘ Re

⇢
[nr ⇥ (nr ⇥E)]⇥ (nr ⇥E⇤)

� nr [E
⇤
· nr ⇥ (nr ⇥E)]

�
(31)

= Re

⇢

(((((((
[nr · (nr ⇥E⇤)] (nr ⇥E)

� nr [(nr ⇥E) · (nr ⇥E⇤)]

+ nr [(nr ⇥E⇤) · (nr ⇥E)]

�
(32)

= 0. (33)

Thus, recalling that we can identify 2!i ! @/@t, and
recalling that the time average of two oscillating quanti-
ties Re(E⇥B⇤) ! 2 hE⇥Bi, we have:
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where pEM = SEM/c2 is the electromagnetic momen-
tum. Thus, the momentum gained by the resonant and
nonresonant particles is precisely the momentum lost by
the electromagnetic fields.

IV. RELATIONSHIP TO GENERALIZED MINKOWSKI
MOMENTUM

Having demonstrated momentum conservation be-
tween waves and particles, we can gain additional in-
sight by looking at di↵erent combinations of the mo-
menta. To this end, begin by summing up the nonreso-
nant momenta of each species (Eq. (21)), and then plug
in the zeroth-order dispersion relation from Eq. (25) and
the relationship between B and E fields from Eq. (5).
After a few vector manipulations, including noting that

n ·B = n · (n⇥E) = 0, we find to lowest order:
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We can recognize the first term in brackets as the (neg-
ative) Poynting momentum flux. Thus, the sum of elec-
tromagnetic and nonresonant momentum takes the form:
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This combination of the momentum is useful not only
because it is compact, but also because it is familiar. In
the study of geometrical optics, the wave can be identi-
fied with a “plasmon”36 or “generalized Minkowski”37

momentum. Derived from Noether’s theorem for the
quasi-monochromatic wave Lagrangian, this momentum
appears in the conservation laws governing the evolution
of the wave envelope in the presence of dissipation or
refraction, and can be thought of as the canonical mo-
mentum of the wave photons. It can be written as37:

pM = kI, (37)

where I is the wave action, given for an electromagnetic
wave in a dispersive dielectric by:
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This expression can be made more familiar by making
use of the zeroth-order dispersion relation (Eq. (25)) and
the relationship between B and E fields from Eq. (5),
which together imply that E⇤

· ✏ · E = B⇤
· B to lowest

order. Application of the chain rule then to Eq. (38) then
quickly yields:
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We can see that this is the same quantity as in Eq. (36),
so that:

pM = pEM +
X

s

pNs. (41)

Thus, the Minkowski momentum, usually interpreted as
the canonical momentum of a photon which governs the
wave packet evolution, also has a quite intuitive physical
interpretation. Namely, it is the combined momentum
gained by the electromagnetic wave field and the nonres-
onant particles as the wave grows from 0 amplitude.
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Summary
• Deep relationships between charge transport, momentum, and current 

pervade many plasma systems, so self consistency is important!
• We have found a self-consistent quasilinear theory for perpendicular 

Landau damping and the alpha channeling instability
• Result: time-evolving and space-evolving waves behave very differently
• Space: wave drives flow if the wave Minkowski momentum changes
• Time:  wave drives flow if the wave electromagnetic momentum changes

• Roughly: For the same resonant process (eg alpha channeling), a growing 
instability will not drive rotation, but a steady-state process will
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