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Milky Way-like (
Galaxy

Sun

~8 kpc

SgrA* 

Black Hole
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SgrA*, at the heart of the Milky Way

S Cluster

What is the dynamics around supermassive black holes?

~50 mpc
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A simple dynamics?
The central BH is supermassive

MSgrA c 4,200,000 × MSun

Keck observations Numerical simulations

MSun c 330,000 × MEarthvs.

Like the Earth around the Sun, stars follow Keplerian orbits

S Cluster
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Keplerian orbits
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Gillessen et al., 2009

The BH dominates the stars’ dynamics

VLT observations Typical orbit
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What is an orbit?

What is the dynamics of Keplerian orbits?

Keplerian orbit

Describing an orbit

Position of the star Shape of the orbit

Phase of the orbit Orientation of the orbit

Semi-major axis

Eccentricity

Phase of the pericentre Spatial orientation

Dynamical motion
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Pericentre precession

Origins of the precession: 
 

+ Relativistic effects from the BH 

+ Perturbations from other stars

~30,000 years 

for S2

Orbits precess in their planes
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Orbits also change in orientations

Two timescales:

Orientation 

~1,000,000 years

Precession 

~30,000 years

Precession j Orientation
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Stellar orientations

Annuli

Orientation

After a full precession, ellipses become annuli

Typical timescale 

~1,000,000 years
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Stars Ellipses Annuli

Stellar dynamics

~10 years 30,000 years ~1,000,000 years

Orbital motion Pericentre precession Orientation precession

SgrA* is 10 Gyr orld. We can wait longer
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Local 

deflections

Stellar energy

Velocity

Time

Change in 

velocity

Zoom on the orbit

Orbital distortions sourced by instantaneous kicks and deflections
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Deflections

Velocity

Time

The star has a lot of close neighbours

Random walk

Nearby stars

Series of deflections

Local 

perturbations
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Stellar energy

Deflections drive a slow change in the Keplerian energy

Typical timescale 

~1,000,000,000 years
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Timescales are highly hierarchical
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1. Dynamical time 
Fast orbital motion induced by the BH 
 

 
 
 
 

2. Precession time 
In-plane precession (mass + relativity) 
 

 
 
 
 

3. Vector Resonant Relaxation 
Non-spherical torque coupling 
 

 
 
 
 

4. Scalar Resonant Relaxation 
Resonant coupling on precessions 
 

 
 
 
 

5. Non-Resonant Relaxation 
Local two-body encounters 
 

 
 
 

d �L

dt
= ·( �L, t)

d |L |

dt
= ·( |L | , t)

da

dt
= ·(a, t)

dM

dt
= «Kep

dË

dt
= «prec
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1. Dynamical time 
Fast orbital motion induced by the BH 
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Timescales are highly hierarchical
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1. Dynamical time 
Fast orbital motion induced by the BH 
 

 
 
 
 

2. Precession time 
In-plane precession (mass + relativity) 
 

 
 
 
 

3. Vector Resonant Relaxation 
Non-spherical torque coupling 
 

 
 
 
 

4. Scalar Resonant Relaxation 
Resonant coupling on precessions 
 

 
 
 
 

5. Non-Resonant Relaxation 
Local two-body encounters 
 

 
 
 

d �L

dt
= ·( �L, t)

de

dt
= ·(e, t)

da

dt
= ·(a, t)

dM

dt
= «Kep

dË

dt
= «p
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1. Dynamical time 
Fast orbital motion induced by the BH 
 

 
 
 
 

2. Precession time 
In-plane precession (mass + relativity) 
 

 
 
 
 

3. Vector Resonant Relaxation 
Non-spherical torque coupling 
 

 
 
 
 

4. Scalar Resonant Relaxation 
Resonant coupling on precessions 
 

 
 
 
 

5. Non-Resonant Relaxation 
Local two-body encounters 
 

 
 
 

d �L

dt
= ·( �L, t)

da

dt
= ·(a, t)

dM

dt
= «Kep

dË

dt
= «p

de

dt
= ·(e, t)
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A wealth of dynamical processes

Kep. Prec. VRR

SRR NR

An extremely hierarchical system
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Vector Resonant Relaxation

Kep. Prec. VRR

SRR NR

The coherent dynamics of orientations
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Stellar orientations

How do stars change of orientations?

Orbits are in all directions

3D visualisation around SgrA*3D visualisation around SgrA*
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Stellar orientations

Annuli

Orientation

After a full precession, ellipses become annuli

Typical timescale 

~1,000,000 years
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Orbital orientations

Orientation

One orientation becomes a single point on the unit sphere

Typical timescale 

~1,000,000 years

�L
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Restricted 2-body problem

Dynamics induced by a single massive star

Heavy star

Zero-mass 

test stars
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Simple orbits around the massive object

Phase mixing

  Vector Resonant Relaxation

Heavy star

Zero-mass 

test stars

Restricted 2-body problem
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Restricted 3-body problem

Heavy star

Heavy star

Dynamics induced by two fixed massive stars

Zero-mass 

test stars
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Problème à trois corps restreint

Test stars attracted by each star respectively

Separatrix
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Heavy star

Heavy star

Zero-mass 

test stars
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Real 2-body problem

Less 

massive star

More 

massive star

Two massive stars together
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Real 2-body problem

Stars orbit around their common ``centre of mass’’

  Vector Resonant Relaxation

Less 

massive star

More 

massive star
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3-body problem
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3-body problem
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Heavy star

Heavy star

Heavy star

Dynamics is integrable!
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  Vector Resonant Relaxation

5

Heavy star

Heavy star

Heavy star

Heavy star

Relaxation starts occuring

Heavy star
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  Vector Resonant Relaxation

A “turbulent” dynamics
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Some aspects of VRR

Diffusion & DilutionStatistics & Correlation

Thermodynamics Numerical integration
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Some aspects of VRR

Diffusion & DilutionStatistics & Correlation

Thermodynamics Numerical integration
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a

+ Motion coherent on large scales 
 

     - Long-range interacting system 
 

+ Motion smooth on short times 
 

     - Time-correlated noise 
 

+ Particles have ``preferred friends’’ 
 

     - Parametric coupling  
 

+ System in statistical equilibrium 
 

     - Time stationarity 
 

     - Rotation invariance  

(a, e)

(t 2 t2 )

( �L ç �L2 )
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+ Motion coherent on large scales 
 

     - Long-range interacting system 
 

+ Motion smooth on short times 
 

     - Time-correlated noise 
 

+ Particles have “preferred friends” 
 

     - Parametric coupling  
 

+ System in statistical equilibrium 
 

     - Time stationarity 
 

     - Rotation invariance  

(a, e)

(t 2 t2 )

( �L ç �L2 )

E
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+ Motion coherent on large scales 
 

     - Long-range interacting system 
 

+ Motion smooth on short times 
 

     - Time-correlated noise 
 

+ Particles have “preferred friends” 
 

     - Parametric coupling  
 

+ System in statistical equilibrium 
 

     - Time stationarity 
 

     - Rotation invariance  

(a, e)

(t 2 t2 )

( �L ç �L2 )

Tbal

Tc
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Random walk on the unit sphere

Stellar orientations follow a correlated random walk

Typical timescale 

~1,000,000 years

Orientation
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Random walk on the unit sphere

Stellar orientations follow a correlated random walk

Typical timescale 

~1,000,000 years

Orientation

  Vector Resonant Relaxation

Tc

Tbal



Self-consistency requirement
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Background particles

a

Test particle

Imposes a noisy 

(correlated) potential

Undergoes a 

(correlated) random walk

�Cbath = ï·( �L, t) ·( �L2 , t2 )ð �Ctest = ï �Ltest(t) ç �Ltest(0)ð
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�Cbath(t)

t

Tc

1

T2
bal

Characterising the bath noise

44

+ The state of the bath is fully characterised by 

 

 

 

+ System’s (quadratic) evolution equation 

 

 
 

+ Good news 

          - At t=0, particles are statistically decorrelated 

          - Very constraining spherical symmetries 
 

+ Initial time statistics 

 

 

 

 

+ (Natural) Gaussian Ansatz

ï d2 �Cbath

dt2

t=0
ð

Çbath(
�L, t) =

1

N

N

3
i=1

·D( �L 2 �Li(t))

"Çbath(t)

"t
= Q Çbath(t) Çbath(t)

ï �Cbath(t = 0)ð

�Cbath(t) =
1

T2
bal

e2(t/Tc)
2

Ballistic time
Coherence time

( �L, t)

( �L2 , t2 )

�Cbath = ï·( �L, t) ·( �L2 , t2 )ð
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�Ctest(t)

t

Characterising the random walk
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+ Location of the test particle characterised by 

 

 
 

+ (Linear) time-dependent evolution equation 

 

 

 

+ Good news 

          - Noise is treated as external 

          - Very constraining spherical symmetry 
 

+ Motion solved using Magnus series 

 

                                           with  

 
 

+ Explicit expression of the time correlation

Çtest(
�L, t) = ·D( �L 2 �Ltest(t))

"Çtest(t)

"t
= ·bath(t) Çtest(t)

Çtest(t) = e«(t) Çtest(0) «(t) =+
t

0

dt2 ·bath(t2 )

�Ltest(0)

�Ltest(t)

�Ctest(t) = exp[ 2+
t

0

dt1+
t

0

dt2
�Cbath(t1 2 t2)]

�Ctest = ï �Ltest(t) ç �Ltest(0)ð

Heavy tails
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Improving the prediction

46

�Cbath(t)

Heavy tails

t

  Vector Resonant Relaxation

Imposing self-consistency

d �Ctest

dt
=

d �Ctest

dt
[ �Cbath]

�Cbath = ï �Ctestð
All particles

Ballistic Diffusive
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How to do better

Additional relaxationRenormalisation

de

dt
b 0;

da

dt
b 0

Asymptotic expansion

Impact of SRR and NR
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G21 = G21
0 2 £

Globular clustersDynamical Friction

�L

IMBH

Orientation infall

Ginat+(2023)
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Some aspects of VRR

Diffusion & DilutionStatistics & Correlation

Thermodynamics Numerical integration
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Vector Resonant Relaxation can affect the disc-stars 

Disc-stars

Gillessen+(2017)

How long should these stars stay ``neighbors’’?

  Vector Resonant Relaxation



Vector Resonant Relaxation can randomize disc stars 

+ How ``neighbors’’ get separated 

 

 
 

 

+ Evolution sourced by a shared, 

spatially-extended 

and time-correlated noise 

 

 

 

 

+ Two joint sources of separation 
 

    - Parametric separation 

 

 

     - Angular separation 

d �Li

dt
= ·( �Li, t)

a

ai b aj

�Li b �Lj

ï·(ai , �Li, t) ·(aj,
�Lj, t2 )ð

= C( ai , aj , �Li ç �Lj , t 2 t2 )

50
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VRR around SgrA*

- Old stars 

(unresolved but relaxed) 

- IMBHs 

(strong source of Poisson noise) 

- S-stars disc ICs 
(initial angular dispersion)

Model

Kinetic theory

Likelihood

Dilution

×(Tæ)

×disc
Giral Martinez+(2020)
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How to do better

Anisotropic orientations

Faking the dilution

Szolgyen+(2018)�L

Disc of IMBHs

Self-gravity Kocsis+(2011)

Pairwise couplings

Langevin equation

Lense-Thirring

  Vector Resonant Relaxation

Phase mixing

Fragione+(2022)

d( �L1ç �L2)
dt

= ·[ �L1,
�L2, t]
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Some aspects of VRR

Diffusion & DilutionStatistics & Correlation

Thermodynamics Numerical integration
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Thermodynamics of VRR

N-body dynamics

"Fd

"t
+ [Fd, H(Fd)] = 0

Quadratic, orbit-averaged, 

hierarchical, multi-population

  Vector Resonant Relaxation
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Thermodynamics of VRR

N-body dynamics

"Fd

"t
+ [Fd, H(Fd)] = 0

Quadratic, orbit-averaged, 

hierarchical, multi-population

Kinetic Theory

"ïFdð

"t
= C[ïFdð, ïFdð]

Integrable equilibrium, 

small perturbations, quasi-linear expansion, 

collective effects, resonant couplings
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Thermodynamics of VRR

N-body dynamics

"Fd

"t
+ [Fd, H(Fd)] = 0

Quadratic, orbit-averaged, 

hierarchical, multi-population

Kinetic Theory

"ïFdð

"t
= C[ïFdð, ïFdð]

Integrable equilibrium, 

small perturbations, quasi-linear expansion, 

collective effects, resonant couplings

Thermodynamics

Feq(
�L) = lim

t³+>
ïFd(

�L, t)ð Ergodic principle
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Thermodynamics of VRR

N-body dynamics

"Fd

"t
+ [Fd, H(Fd)] = 0

Quadratic, orbit-averaged, 

hierarchical, multi-population

Kinetic Theory

"ïFdð

"t
= C[ïFdð, ïFdð]

Integrable equilibrium, 

small perturbations, quasi-linear expansion, 

collective effects, resonant couplings

Thermodynamics

Feq(
�L) = lim

t³+>
ïFd(

�L, t)ð Ergodic principle

Global N-body invariants

K = (m, a, e)

Annuli shape

Sub-populationsN(K)

Etot

�L(K)

Total energy

Total angular momentum
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An example of relaxation

Stars

  Vector Resonant Relaxation

Intermediate mass black holes

Anisotropic distribution from gas infall
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An example of relaxation
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Relaxation on short timescales

Stars Intermediate mass black holes
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An example of relaxation
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Relaxation on long timescales

Stars Intermediate mass black holes
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An example of relaxation

  Vector Resonant Relaxation

Anisotropic equilibria

Stars Intermediate mass black holes
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Thermodynamics of VRR

Entropy maximisation

Generalised Boltzmann DF

Feq(
�L, K) ? exp[ 2 ³ ·( �L, K) + L(K) ³ç �L]

Temperature Spin

S ? + d �LdK F ln[F] under the conservation of the invariants

Self-consistency

[³, ³] ÷ [Etot, Ltot]
?
= [Etot(t =0), Ltot(t =0)]
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Phase transition between ordered and disordered states
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An example of equilibrium

Spontaneous anisotropic mass segregation

m[M»]

�Lz

Feq(m, �Lz)

Light particles Heavy particles

IMBHs

Stars

The more individually massive the population, the stronger the alignment

See also Szolgyen+(2018)
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How to do better

Non-axisymmetry Timescale

ObservationsWires thermodynamics 

Gruzinov+(2020)

Fb(
�L, t)

Trelax
Feq(

�L)ïY3mð for m b 0

×æ

×;?

Spontaneous symmetry breaking

Annulus Wire IMBHs disc?

How fast to create anisotropies?
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Some aspects of VRR

Diffusion & DilutionStatistics & Correlation

Thermodynamics Numerical integration
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·y = F(y)
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Time integration
Classical integration

yn

Ç
yn+1
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·y = F(y)

67

Time integration
Classical integration

Explicit Midpoint rule

yn

Ç
yn+1

F1 = F(yn)

y2 = yn+
1

2
Ç F1

F2 = F(y2)

yn+1 = yn + Ç F2

yn

Ç

2
F1

y2

F2

ÇF2

yn+1
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Time integration
Classical integration

Explicit Midpoint rule

yn

Ç
yn+1

F1 = F(yn)

y2 = yn+
1

2
Ç F1

F2 = F(y2)

yn+1 = yn + Ç F2

F1 = F(yn)

y2 = yn+
1

2
ÇF1

F2 = F(y2)

y3 = yn+
1

2
ÇF2

F3 = F(y3)

y4 = yn + ÇF3

F4 = F(y4)

F =
1

6
F1+

1

3
F2+

1

3
F3+

1

6
F4

yn+1 = yn + ÇF

Fourth-order Runge-Kutta

yn

Ç

2
F1

y2

F2

ÇF2

yn+1
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Time integration
Classical integration

Explicit Midpoint rule

yn

Ç
yn+1

F1 = F(yn)

y2 = yn+
1

2
Ç F1

F2 = F(y2)

yn+1 = yn + Ç F2

F1 = F(yn)

y2 = yn+
1

2
ÇF1

F2 = F(y2)

y3 = yn+
1

2
ÇF2

F3 = F(y3)

y4 = yn + ÇF3

F4 = F(y4)

F =
1

6
F1+

1

3
F2+

1

3
F3+

1

6
F4

yn+1 = yn + ÇF

Fourth-order Runge-Kutta

How to comply with constraints?

y2 = y + Ç F

F = F1 + F2
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Time integration
Force on a star

Seen from 

above
Force

Force
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Classical integration
Force on a star

Seen 

from above
Force

Advance a star

Stars leave the unit sphere. Bad

In 

straight line =

Force
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Classical integration
Force on a star

Seen 

from above
Force

Advance a star

By 

``rotating’’ =

Stars stay on the unit sphere. Good

Rotation

Force
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Structure-preserving integration

·
b = B(b) with B(b)çb = 0

Dynamics on the unit sphere

b
B

«

Rotation along great circle

·
b = « × b with « = b ×

·
b

Exact solution for fixed «

b(t) = ×[t «] : b(0)

Rodrigues’ rotation formula
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Explicit scheme
Explicit Midpoint via rotations

F1 = F(yn)

y2 = yn+
1

2
Ç F1

F2 = F(y2)

yn+1 = yn + Ç F2

«1 = «(bn)

b2 = ×[
1

2
Ç «1] : bn

«2 = «(b2)

bn+1 = ×[Ç«2] : bn

Properties: 

(i) explicit 

(ii) intrinsic 

(ii) exactly conserves |b| 

(iii) second-order accurate 

(iv) two-stage
b

B

«

MK2

Adding commutations, can be used for high-order schemes Munthe-Kaas(1999)
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How to do better

Multi-timesteps

ïHð = 3
(i,j)*A

ïHijð + 3
(i,j)*B

ïHijð

Saha+(1994)Parallelisation

P3m(r) = 3
j,l;rjl<r

Y3m(r)

Parallel prefix sum

Ladner+(1980)

Softening Dehnen+(2014)

1

|r 2 r2 |
³ Ç÷(r 2 r2 )

Direct summation & Opening angle

Gauss method Touma+(2009)

Star-Wire interaction

Hamiltonian splitting
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A wealth of dynamical processes

Kep. Prec. VRR

SRR NR

An extremely hierarchical system
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The future of galactic nuclei

New stellar orbits

TMT and ELT

UCLA

2,500,000 km

Expected observations

~10 mpc

Infall of compact objects

LISA spatial interferometer
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Next steps — Theory & Numerics

Non-axisymmetry

Ftot = Ftot(a, e, �L )

Linear response

M(Ë) = 3
k

+ dJ
G(J)

kç«(J)2Ë

Response matrix & Modes

More efficient methods

TKep ? a3/2

Trel ? a4/2 (12e2)

Range of timescales

Time integration

Rotation

"F

"t
= C[F, F]

Collision operator
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SgrA* is exciting

Clockwise stellar disc KeckCold accretion disc
Murchikova+(2019)

S2’s relativistic precession
Gravity+(2020)

Event Horizon EHT+(2022)
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Next steps — SgrA* & Observations

Future observations

P = P(a, e, �L )

Full PDF statistics

VRR & Stellar Discs VLT, KeckSRR & Eccentricity
Gillessen+(2017)

0.0 0.2 0.4 0.6 0.8 1.0
h0.0

0.5

1.0

1.5

2.0

2.5

3.0

P(h)

Observations

Thermal

S2’s kinematics Gravity+(2023) 

Will+(2023)

Eccentricity thermalisation

Local perturbations?

Disc dilution
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A liquid crystal

  Vector Resonant Relaxation

Quadrupolar 

interaction


