

1

Vector Resonant Relaxation

Jean-Baptiste Fouvry, IAP fouvry@iap.fr

> KITP June, 2024

Down memory lane

SEGAL meeting — Edinburgh April, 2023

Vector Resonant Relaxation

Particular thanks to the following graduate students

Sofia Flores Renormalisation

Mathieu Roule Kinetic blockings

Juan Giral Neighbor separation

Nathan Magnan Thermodynamical Eq.

SgrA*, at the heart of the Milky Way

What is the dynamics around **supermassive black holes**?

A simple dynamics?

The central BH is **supermassive**

Keck observations

Numerical simulations

Like the Earth around the Sun, stars follow Keplerian orbits

Keplerian orbits

The BH dominates the stars' dynamics

Gillessen et al., 2009

VLT observations

Typical orbit

What is an orbit?

Describing an **orbit**

What is the dynamics of **Keplerian orbits**?

Pericentre precession

Origins of the **precession**:

+ Relativistic effects from the BH+ Perturbations from other stars

~30,000 years

for S2

Orbits **precess** in their planes

Orbits also change in orientations

Stellar orientations

After a full precession, ellipses become annuli

Stellar dynamics

SgrA* is 10 Gyr orld. We can wait longer

Stellar energy

Orbital distortions sourced by instantaneous kicks and deflections

Deflections

Stellar energy

Deflections drive a slow change in the Keplerian energy

1. Dynamical time Fast orbital motion induced by the BH

 $\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$

1. Dynamical time Fast orbital motion induced by the BH

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

2. Precession time

In-plane precession (mass + relativity)

 $\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$

2. Precession time In-plane precession (mass + relativity)

 $\frac{\mathrm{d}\omega}{\mathrm{d}t} = \Omega_{\mathrm{p}}$

3. Vector Resonant Relaxation Non-spherical torque coupling

$$\frac{\mathrm{d}\hat{\mathbf{L}}}{\mathrm{d}t} = \eta(\hat{\mathbf{L}}, t)$$

4. Scalar Resonant Relaxation *Resonant coupling on precessions*

$$\frac{\mathrm{d}e}{\mathrm{d}t} = \eta(e, t)$$

2

A wealth of dynamical processes

An extremely hierarchical system

Vector Resonant Relaxation

Vector Resonant Relaxation

The coherent dynamics of **orientations**

Stellar orientations

Orbits are in **all directions**

How do stars change of **orientations**?

Stellar orientations

After a full precession, ellipses become annuli

Orbital orientations

One orientation becomes a single point on the **unit sphere**

Restricted 2-body problem

Dynamics induced by a single massive star

Restricted 2-body problem

Simple **orbits** around the massive object

Restricted 3-body problem

Dynamics induced by **two fixed massive stars**

Test stars attracted by **each star respectively**

Real 2-body problem

Two massive stars together

30

Real 2-body problem

Stars orbit around their common ``**centre of mass**"

3-body problem

Dynamics is **integrable!**

Vector Resonant Relaxation

Relaxation starts occuring

A "turbulent" dynamics

Some aspects of VRR

Some aspects of VRR

Vector Resonant Relaxation

+ Motion coherent on large scales - Long-range interacting system + Motion smooth on short times - Time-correlated noise + Particles have ``preferred friends" - Parametric coupling (a, e)+ System in statistical equilibrium - Time stationarity (t - t')- Rotation invariance $(\hat{L}\cdot\hat{L}')$

Vector Resonant Relaxation

Vector Resonant Relaxation

Random walk on the unit sphere

Stellar orientations follow a correlated random walk

Random walk on the unit sphere

Stellar orientations follow a correlated random walk

Self-consistency requirement

Characterising the bath noise $\hat{C}_{\text{bath}} = \left\langle \eta(\hat{\mathbf{L}}, t) \eta(\hat{\mathbf{L}}', t') \right\rangle$

+ The **state of the bath** is fully characterised by

$$\rho_{\text{bath}}(\hat{\mathbf{L}}, t) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\text{D}}(\hat{\mathbf{L}} - \hat{\mathbf{L}}_{i}(t))$$

+ System's (quadratic) evolution equation

$$\frac{\partial \varphi_{\text{bath}}(t)}{\partial t} = Q \,\varphi_{\text{bath}}(t) \,\varphi_{\text{bath}}(t)$$

+ Good news

- At t=0, particles are **statistically decorrelated**
- Very constraining **spherical symmetries**

+ Initial time statistics

$$\left< \hat{C}_{\rm bath}(t=0) \right>$$

Coherence time

Ballistic time

+ (Natural) **Gaussian** Ansatz

Characterising the random walk $\hat{C}_{test} = \left\langle \hat{L}_{test}(t) \cdot \hat{L}_{test}(0) \right\rangle$

+ Location of the **test particle** characterised by

$$\rho_{\text{test}}(\hat{\mathbf{L}}, t) = \delta_{\text{D}}(\hat{\mathbf{L}} - \hat{\mathbf{L}}_{\text{test}}(t))$$

+ (Linear) **time-dependent** evolution equation

$$\frac{\partial \varphi_{\text{test}}(t)}{\partial t} = \eta_{\text{bath}}(t) \, \varphi_{\text{test}}(t)$$

- + Good news
 - Noise is treated as external
 - Very constraining **spherical symmetry**
- + Motion solved using **Magnus series**

$$\varphi_{\text{test}}(t) = e^{\Omega(t)} \varphi_{\text{test}}(0)$$
 with $\Omega(t) = \int_0^t dt' \eta_{\text{bath}}(t')$

+ Explicit expression of the **time correlation**

$$\hat{C}_{\text{test}}(t) = \exp\left[-\int_0^t dt_1 \int_0^t dt_2 \,\hat{C}_{\text{bath}}(t_1 - t_2)\right]$$

Improving the prediction

Imposing **self-consistency**

How to do better

Some aspects of VRR

Vector Resonant Relaxation can affect the disc-stars

How long should these stars stay ``**neighbors**''?

Vector Resonant Relaxation can randomize disc stars

$$\frac{\mathrm{d}\hat{\mathbf{L}}_i}{\mathrm{d}t} = \eta(\hat{\mathbf{L}}_i, t)$$

+ Evolution sourced by a **shared**, **spatially-extended** and **time-correlated** noise

$$\left\langle \eta(a_i, \hat{\mathbf{L}}_i, t) \, \eta(a_j, \hat{\mathbf{L}}_j, t') \right\rangle$$

= $C(a_i, a_j, \hat{\mathbf{L}}_i \cdot \hat{\mathbf{L}}_j, t - t')$

- + Two joint sources of **separation**
 - Parametric separation

$$a_i \neq a_j$$

- Angular separation

$$\hat{\mathbf{L}}_i \neq \hat{\mathbf{L}}_j$$

VRR around SgrA*

How to do better

Some aspects of VRR

N-body dynamics

$$\frac{\partial F_{\rm d}}{\partial t} + \left[F_{\rm d}, H(F_{\rm d})\right] = 0$$

Quadratic, orbit-averaged, hierarchical, multi-population

N-body dynamics

$$\frac{\partial F_{\rm d}}{\partial t} + \left[F_{\rm d}, H(F_{\rm d})\right] = 0$$

Kinetic Theory

$$\frac{\partial \langle F_{\rm d} \rangle}{\partial t} = C \big[\langle F_{\rm d} \rangle, \langle F_{\rm d} \rangle \big]$$

Quadratic, orbit-averaged, hierarchical, multi-population

Integrable equilibrium, small perturbations, quasi-linear expansion, collective effects, resonant couplings

N-body dynamics

$$\frac{\partial F_{\rm d}}{\partial t} + \left[F_{\rm d}, H(F_{\rm d})\right] = 0$$

Kinetic Theory

$$\frac{\partial \langle F_{\rm d} \rangle}{\partial t} = C \big[\langle F_{\rm d} \rangle, \langle F_{\rm d} \rangle \big]$$

Thermodynamics

Quadratic, orbit-averaged, hierarchical, multi-population

Integrable equilibrium, small perturbations, quasi-linear expansion, collective effects, resonant couplings

$$F_{\rm eq}(\hat{\mathbf{L}}) = \lim_{t \to +\infty} \langle F_{\rm d}(\hat{\mathbf{L}}, t) \rangle$$

Ergodic principle

N-body dynamics

$$\frac{\partial F_{\rm d}}{\partial t} + \left[F_{\rm d}, H(F_{\rm d})\right] = 0$$

Kinetic Theory

$$\frac{\partial \langle F_{\rm d} \rangle}{\partial t} = C \big[\langle F_{\rm d} \rangle, \langle F_{\rm d} \rangle \big]$$

Thermodynamics

Quadratic, orbit-averaged, hierarchical, multi-population

Integrable equilibrium, small perturbations, quasi-linear expansion, collective effects, resonant couplings

$$F_{\rm eq}(\hat{\mathbf{L}}) = \lim_{t \to +\infty} \langle F_{\rm d}(\hat{\mathbf{L}}, t) \rangle$$

Ergodic principle

Global N-body invariants

$$\mathbf{K} = (m, a, e)$$

Annuli shape

 $\begin{cases} N(\mathbf{K}) & \text{Sub-populations} \\ E_{\text{tot}} & \text{Total energy} \\ \mathbf{\hat{L}}(\mathbf{K}) & \text{Total angular momentum} \end{cases}$

Intermediate mass black holes

Anisotropic distribution from gas infall

Intermediate mass black holes

Relaxation on **short timescales**

Intermediate mass black holes

Relaxation on **long timescales**

Intermediate mass black holes

Anisotropic equilibria

Entropy maximisation

 $S \propto \left[d\hat{\mathbf{L}} d\mathbf{K} F \ln[F] \right]$ under the conservation of the **invariants**

Spin

Generalised Boltzmann DF

$$F_{\rm eq}(\hat{\mathbf{L}}, \mathbf{K}) \propto \exp\left[-\beta \,\varepsilon(\hat{\mathbf{L}}, \mathbf{K}) + L(\mathbf{K}) \,\boldsymbol{\gamma} \cdot \hat{\mathbf{L}}\right]$$

Temperature

Self-consistency

$$[\beta, \gamma] \longrightarrow [E_{\text{tot}}, \mathbf{L}_{\text{tot}}] \stackrel{?}{=} [E_{\text{tot}}(t=0), \mathbf{L}_{\text{tot}}(t=0)]$$

Phase transition between ordered and disordered states

An example of equilibrium

The more individually massive the population, the stronger the **alignment**

How to do better

Non-axisymmetry

 $\langle Y_{\ell m} \rangle$ for $m \neq 0$

Spontaneous symmetry breaking

Timescale

$$F_{\rm b}(\hat{\mathbf{L}},t) \xrightarrow{T_{\rm relax}} F_{\rm eq}(\hat{\mathbf{L}})$$

How fast to create anisotropies?

Some aspects of VRR

Classical integration

$$\dot{y} = F(y)$$

$$y_n \xrightarrow{\tau} y_{n+1}$$

Classical integration

 $\dot{y} = F(y)$

$$y_n \xrightarrow{\tau} y_{n+1}$$

Explicit Midpoint rule

$$F_1 = F(y_n)$$

$$y_2 = y_n + \frac{1}{2}\tau F_1$$

$$F_2 = F(y_2)$$

$$y_{n+1} = y_n + \tau F_2$$

Classical integration

 $\dot{y} = F(y)$

Explicit Midpoint rule

$$F_1 = F(y_n)$$

$$y_2 = y_n + \frac{1}{2}\tau F_1$$

$$F_2 = F(y_2)$$

$$y_{n+1} = y_n + \tau F_2$$

$$y_n \xrightarrow{\tau} y_{n+1}$$

Fourth-order **Runge-Kutta**

 $F_1 = F(y_n)$ $y_2 = y_n + \frac{1}{2}\tau F_1$ $F_2 = F(y_2)$ $y_3 = y_n + \frac{1}{2}\tau F_2$ $F_3 = F(y_3)$ $y_4 = y_n + \tau F_3$ $F_4 = F(y_4)$ $F = \frac{1}{6}F_1 + \frac{1}{3}F_2 + \frac{1}{3}F_3 + \frac{1}{6}F_4$ $y_{n+1} = y_n + \tau F$

Classical integration

 $\dot{y} = F(y)$

Explicit Midpoint rule

$$F_1 = F(y_n)$$

$$y_2 = y_n + \frac{1}{2}\tau F_1$$

$$F_2 = F(y_2)$$

$$y_{n+1} = y_n + \tau F_2$$

How to comply with constraints?

$$y' = y + \tau F$$
$$F = F_1 + F_2$$

$$y_n \xrightarrow{\tau} y_{n+1}$$

Fourth-order **Runge-Kutta**

 $F_1 = F(y_n)$ $y_2 = y_n + \frac{1}{2}\tau F_1$ $F_2 = F(y_2)$ $y_3 = y_n + \frac{1}{2}\tau F_2$ $F_3 = F(y_3)$ $y_4 = y_n + \tau F_3$ $F_A = F(y_A)$ $F = \frac{1}{6}F_1 + \frac{1}{3}F_2 + \frac{1}{3}F_3 + \frac{1}{6}F_4$ $y_{n+1} = y_n + \tau F$

Advance a star

Stars leave the unit sphere. Bad

Advance a star

Stars stay on the unit sphere. Good
Structure-preserving integration

Dynamics on the **unit sphere**

$$\dot{\mathbf{b}} = \mathbf{B}(\mathbf{b})$$
 with $\mathbf{B}(\mathbf{b}) \cdot \mathbf{b} = 0$

Rotation along great circle

$$\dot{\mathbf{b}} = \mathbf{\Omega} \times \mathbf{b}$$
 with $\mathbf{\Omega} = \mathbf{b} \times \dot{\mathbf{b}}$

Exact solution for fixed $\, \Omega \,$

$$\mathbf{b}(t) = \phi[t\,\mathbf{\Omega}] \circ \mathbf{b}(0)$$

Rodrigues' rotation formula

Explicit scheme

Explicit Midpoint via rotations

$$F_1 = F(y_n)$$

$$y_2 = y_n + \frac{1}{2}\tau F_1$$

$$F_2 = F(y_2)$$

$$y_{n+1} = y_n + \tau F_2$$

Properties:

(i) explicit

(ii) intrinsic

- (ii) exactly conserves lbl
- (iii) second-order accurate
- (iv) two-stage

$$\Omega_{1} = \Omega(\mathbf{b}_{n}) \quad \mathsf{MK2}$$
$$\mathbf{b}_{2} = \phi[\frac{1}{2}\tau \,\Omega_{1}] \circ \mathbf{b}_{n}$$
$$\Omega_{2} = \Omega(\mathbf{b}_{2})$$
$$\mathbf{b}_{n+1} = \phi[\tau \Omega_{2}] \circ \mathbf{b}_{n}$$

Adding commutations, can be used for high-order schemes Munthe-Kaas(1999)

How to do better

Direct summation & Opening angle

A wealth of dynamical processes

An extremely hierarchical system

The future of galactic nuclei

TMT and ELT

UCLA

Infall of **compact objects**

LISA spatial interferometer

Expected observations

Next steps — Theory & Numerics

Linear response

$$\mathbf{M}(\boldsymbol{\omega}) = \sum_{\mathbf{k}} \int d\mathbf{J} \frac{G(\mathbf{J})}{\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \boldsymbol{\omega}}$$

Response matrix & Modes

Non-axisymmetry

$$F_{\text{tot}} = F_{\text{tot}}(a, e, \mathbf{L})$$

Rotation

More efficient methods

$$T_{
m Kep} \propto a^{3/2}$$

 $T_{
m rel} \propto a^{4/2} (1 - e^2)$

Range of timescales

$$\frac{\partial F}{\partial t} = C[F, F]$$

Collision operator

SgrA* is exciting

<section-header><section-header>

Next steps — SgrA* & Observations

A liquid crystal

Quadrupolar interaction