Field-particle correlation is a technique for determining what energy transfer processes are actually important in a given element of plasma

Field-particle correlation is a technique for determining what energy transfer processes are actually important in a given element of plasma

- Understanding the dynamics as a function of time, not just in the asymptotic limit is critical
- Need to distinguish the secular evolution from oscillatory motion
- Distinguishing between multiple processes occurring simultaneously critical for understanding the physics

Measurements are primarily **in situ**

Starting with the Vlasov equation, we multiply by the energy for the given species ($m_sv^2/2$), to obtain an expression for the evolution of the phase space energy density

$$\frac{\partial w_s}{\partial t} = -\mathbf{v} \cdot \nabla w_s - q_s \frac{v^2}{2} \mathbf{E} \cdot \frac{\partial f_s}{\partial v} - q_s \frac{v^2}{2} (\mathbf{v} \times \mathbf{E})$$

where $w_s(\mathbf{r}, \mathbf{v}, t) = m_s v^2 f_s(\mathbf{r}, \mathbf{v}, t)/2$

(Klein+ 2016, Howes+2017)

Starting with the Vlasov equation, we multiply by the energy for the given species ($m_sv^2/2$), to obtain an expression for the evolution of the phase space energy density

$$\frac{\partial w_s}{\partial t} = -\mathbf{v} \cdot \mathbf{\nabla} w_s - q_s \frac{v^2}{2} \mathbf{E} \cdot \frac{\partial f_s}{\partial v} - q_s \frac{v^2}{2} (\mathbf{v} \times \mathbf{B})$$

where $w_s(\mathbf{r}, \mathbf{v}, t) = m_s v^2 f_s(\mathbf{r}, \mathbf{v}, t)/2$

 Contributes zero net energy - transfers energy within physical and phase space

(Klein+ 2016, Howes+2017)

Starting with the Vlasov equation, we multiply by the energy for the given species ($m_sv^2/2$), to obtain an expression for the evolution of the phase space energy density

$$\frac{\partial w_s}{\partial t} = -\mathbf{v} \cdot \nabla w_s - q_s \frac{v^2}{2} \mathbf{E} \cdot \frac{\partial f_s}{\partial v} - q_s \frac{v^2}{2} (\mathbf{v} \times \mathbf{B})$$

where $w_s(\mathbf{r}, \mathbf{v}, t) = m_s v^2 f_s(\mathbf{r}, \mathbf{v}, t)/2$

- Contributes zero net energy transfers energy within physical and phase space
- Magnetic fields do no work

(Klein+ 2016, Howes+2017)

Starting with the Vlasov equation, we multiply by the energy for the given species ($m_sv^2/2$), to obtain an expression for the evolution of the phase space energy density

$$\frac{\partial w_s}{\partial t} = -\mathbf{v} \cdot \nabla w_s \left[-q_s \frac{v^2}{2} \mathbf{E} \cdot \frac{\partial f_s}{\partial v} \right] - q_s \frac{v^2}{2} (\mathbf{v} \times \mathbf{B})$$

where $w_s(\mathbf{r}, \mathbf{v}, t) = m_s v^2 f_s(\mathbf{r}, \mathbf{v}, t)/2$

- Contributes zero net energy transfers energy within physical and phase space
- Magnetic fields do no work

$$C_E(\mathbf{v}, t, \tau) = C\left(-q_e \frac{v^2}{2} \frac{\partial f_e}{\partial v}, E\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v^2}{2} \frac{\partial f_e}{\partial v}$$

It can be shown that when integrated over physical space and velocity space, this term is proportional to $j \cdot E$

(Klein+ 2016, Howes+2017)

The Field-Particle Correlation (FPC) signal of Landau damping $(v^2/2)(\partial \delta f/\partial v)E$

$$C_E(\mathbf{v}, t, \tau) = C\left(-q_e \frac{v^2}{2} \frac{\partial f_e}{\partial v}, E\right) = -\frac{1}{N} \sum_{j=1}^N q_e$$

Emily Lichko

faster particles

KITP

Start with the field-particle correlation

$$C_{E_{\parallel}}(\mathbf{v},t,\tau) = C\left(-q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}$$

Start with the field-particle correlation

$$C_{E_{\parallel}}(\mathbf{v},t,\tau) = C\left(-q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}$$

Start with the field-particle correlation

$$\begin{split} C_{E_{\parallel}}(\mathbf{v},t,\tau) &= C\left(-q_{e}\frac{v_{\parallel}^{2}}{2}\frac{\partial f_{e}}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N}\sum_{j=1}^{N}q_{e}\frac{v_{\parallel}^{2}}{2}\frac{\partial f_{e}}{\partial v_{\parallel}}\\ E &= E_{0}e^{\gamma t}e^{-i\omega_{R}t} \end{split}$$

Imagine that we have a single wave with frequency some rate
$$\gamma$$
, and plug that into the FPC expression

 ω_R , damped at

Start with the field-particle correlation

$$\begin{split} C_{E_{\parallel}}(\mathbf{v},t,\tau) &= C\left(-q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} \\ E &= E_0 e^{\gamma t} e^{-i\omega_R t} \end{split}$$

Imagine that we have a single wave with frequency ω_R , damped at some rate γ , and plug that into the FPC expression

$$C_{E_{\parallel}} = \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt - \frac{1}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt - \frac{1}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt - \frac{1}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt - \frac{1}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt$$

$$C_{E_{\parallel}} = \int_{-\infty}^{\infty} x(t) w(t - t_0) e^{-i\omega_R t} dt$$

Start with the field-particle correlation

$$\begin{split} C_{E_{\parallel}}(\mathbf{v},t,\tau) &= C\left(-q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} \\ E &= E_0 e^{\gamma t} e^{-i\omega_R t} \end{split}$$

Imagine that we have a single wave with frequency ω_R , damped at some rate γ , and plug that into the FPC expression

$$C_{E_{\parallel}} = \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt - \frac{1}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt - \frac{1}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt - \frac{1}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt - \frac{1}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt$$

Emily Lichko

$$C_{E_{\parallel}} = \int_{-\infty}^{\infty} x(t) w(t - t_0) e^{-i\omega_R t} dt$$

And we get exactly a short-time Fourier transform evaluated at the frequency of the wave!

Start with the field-particle correlation

$$\begin{split} C_{E_{\parallel}}(\mathbf{v},t,\tau) &= C\left(-q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} \\ & E = E_0 e^{\gamma t} e^{-i\omega_R t} \end{split}$$

Imagine that we have a single wave with frequency ω_R , damped at some rate γ , and plug that into the FPC expression

$$C_{E_{\parallel}} = \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt$$

$$C_{E_{\parallel}} = \int_{-\infty}^{\infty} x(t) w(t - t_0) e^{-i\omega_R t} dt$$

And we get exactly a short-time Fourier transform evaluated at the frequency of the wave!

Start with the field-particle correlation

Imagine that we have a single wave with frequency ω_R , damped at some rate γ , and plug that into the FPC expression

$$C_{E_{\parallel}} = \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_0 e^{\gamma t} w(t-t_0) e^{-i\omega_R t} dt - \frac{\partial f_e}{\partial v_{\parallel}} e^{-i\omega_R t} dt$$

Emily Lichko

$$C_{E_{\parallel}} = \int_{-\infty}^{\infty} x(t) w(t - t_0) e^{-i\omega_R t} dt$$

And we get exactly a short-time Fourier transform evaluated at the frequency of the wave!

Start with the field-particle correlation

Imagine that we have a single wave with frequency ω_R , damped at some rate γ , and plug that into the FPC expression

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_{0,n} e^{\gamma_n t} w(t-t_0) e^{-i\omega_{R,n} t} dt$$

Emily Lichko

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} x_n(t) w(t - t_0) e^{-i\omega_{R,n} t} dt$$

And we get exactly a short-time Fourier transform evaluated at the frequency of the wave!

Start with the field-particle correlation

Imagine that we have a single wave with frequency ω_R , damped at some rate γ , and plug that into the FPC expression

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_{0,n} e^{\gamma_n t} w(t-t_0) e^{-i\omega_{R,n} t} dt$$

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} x_n(t) w(t - t_0) e^{-i\omega_{R,n} t} dt$$

And we get exactly a short-time Fourier transform evaluated at the frequency of the wave!

Start with the field-particle correlation

Imagine that we have a single wave with frequency ω_R , damped at some rate γ , and plug that into the FPC expression

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_{0,n} e^{\gamma_n t} w(t-t_0) e^{-i\omega_{R,n} t} dt$$

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} x_n(t) w(t - t_0) e^{-i\omega_{R,n} t} dt$$

And we get exactly a short-time Fourier transform evaluated at the frequency of the wave!

Equivalent to only looking at the real part of a Fourier transform. Both the frequency and phase information is included, but convoluted together.

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_{0,n} e^{\gamma_n t} w(t-t_0) e^{-i\omega_{R,n} t} dt$$

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} x_n(t) w(t-t_0) \left[\cos(\omega_{R,n}) + i \sin(\omega_{R,n}) \right] dt$$

By transforming the quantities individually first, we can recover both the magnitude and phase information as a function of time, frequency, and velocity, then evaluate the relative phase for each frequency and point in time.

$$C_{E} = \left| STFT \left[\Re \left(\frac{v^{2}}{2} \frac{\partial \delta f}{\partial v} \right) \right] \right| \left| STFT \left[\Re \left(E \right) \right] \right| F(\phi_{f}, \phi_{E})$$

Equivalent to only looking at the real part of a Fourier transform. Both the frequency and phase information is included, but convoluted together.

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_{0,n} e^{\gamma_n t} w(t-t_0) e^{-i\omega_{R,n} t} dt$$

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} x_n(t) w(t-t_0) \left[\cos(\omega_{R,n}) + i \sin(\omega_{R,n}) \right]$$

By transforming the quantities individually first, we can recover both the magnitude and phase information as a function of time, frequency, and velocity, then evaluate the relative phase for each frequency and point in time.

$$C_{E} = \left| STFT \left[\Re \left(\frac{v^{2}}{2} \frac{\partial \delta f}{\partial v} \right) \right] \right| \left| STFT \left[\Re \left(E \right) \right] \right| F(\phi_{f}, \phi_{E})$$

Equivalent to only looking at the real part of a Fourier transform. Both the frequency and phase information is included, but convoluted together.

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_{0,n} e^{\gamma_n t} w(t-t_0) e^{-i\omega_{R,n} t} dt$$

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} x_n(t) w(t-t_0) \left[\cos(\omega_{R,n}) + i \sin(\omega_{R,n}) \right]$$

By transforming the quantities individually first, we can recover both the magnitude and phase information as a function of time, frequency, and velocity, then evaluate the relative phase for each frequency and point in time.

$$C_{E} = \left| STFT \left[\Re \left(\frac{v^{2}}{2} \frac{\partial \delta f}{\partial v} \right) \right] \right| \left| STFT \left[\Re \left(E \right) \right] \right| F(\phi_{f}, \phi_{E}) \right|$$

 $Re[e^{i(\phi f - \phi E)}] = \cos(\phi_f - \phi_E)$

Applying the wavelet transform to electric field data from Gkeyll simulation of electron landau damping at a single frequency

Emily Lichko

KITP

Applying the wavelet transform to electric field data from Gkeyll simulation of electron landau damping at two frequencies

Applying the wavelet transform to electric field data from Gkeyll simulation of electron landau damping at two frequencies

Applying the frequency-resolved FPC to data from MMS spacecraft

Emily Lichko

0└ _3

-2

-1

0

 $v_{\parallel}/v_{\rm th,e}$

KITP

10

–4 ù

-6

Applying the frequency-resolved FPC to data from MMS spacecraft

Emily Lichko

KITP

Applying the wavelet transform to electric field data from **Gkeyll simulation of electron landau damping**

$$C_{E_{\parallel}} = \int_{-\infty}^{\infty} x(t) w(t - t_0) e^{-i\omega_R t} dt$$

Emily Lichko

Applying the wavelet transform to electric field data from **Gkeyll simulation of electron landau damping**

$$C_{E_{\parallel}} = \int_{-\infty}^{\infty} x(t) w(t - t_0) e^{-i\omega_R t} dt$$

Fundamental limitation on the area in frequency-time space and on the frequency resolution

1. Heisenberg-Gabor Limit - because time and frequency are not independent variables, the uncertainty in a frequency over a time period is bounded by a constant, *i.e.*

$\Delta f \Delta t \geq 1$

2. Limitation on the ability to distinguish peaked distributions of nearby frequencies

KITP

Applying the frequency-resolved FPC to data from MMS spacecraft

Emily Lichko

KITP

Applying the frequency-resolved FPC to data from MMS spacecraft

Applying the frequency-resolved FPC to data from MMS spacecraft

Emily Lichko

KITP

Applying the frequency-resolved FPC to data from MMS spacecraft

	×10 ⁻³
_	7
_	6
_	5
_	4
_	3
_	2
_	1
	0

Applying the frequency-resolved FPC to data from MMS spacecraft

	×10 ⁻³
_	7
_	6
_	5
_	4
_	3
_	2
_	1
	0

Applying the frequency-resolved FPC to data from MMS spacecraft

Emily Lichko

Applying the frequency-resolved FPC to data from MMS

Emily Lichko

KITP

- Updated method of determining the energy transfer between the fields and particles from kinetic processes
- Not only does this method add an additional dimension to the traditional field-particle correlation method, but it provides better resolution when there are competing dissipation processes

Summary

- Updated method of determining the energy transfer between the fields and particles from kinetic processes
- Not only does this method add an additional dimension to the traditional field-particle correlation method, but it provides better resolution when there are competing dissipation processes

Thank you! Questions?

KITP

Start with the field-particle correlation

$$C_E(\mathbf{v}, t, \tau) = C\left(-q_e \frac{v^2}{2} \frac{\partial f_e}{\partial v}, E\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v^2}{2} \frac{\partial f_e}{\partial v}$$

Because

$$C_E(v,t_0,\tau) = \int_{t_0-\tau/2}^{t_0+\tau/2} \left(-q_e \frac{v^2}{2} \frac{\partial f_e}{\partial v} E\right) dt = \int_{-\infty}^{\infty} \left(-q_e \frac{v^2}{2} \frac{\partial f_e}{\partial v} \right) dt$$

where $w(t - t_0; \tau) = \begin{cases} 1 & \text{if } t_0 - \tau/2 \le t \le t_0 + \tau/2 \\ 0 & \text{otherwise} \end{cases}$

Imagine that we have a single wave with frequency ω_R , damped at some rate γ , and plug that into the FPC expression

$$C_E = \int_{-\infty}^{\infty} \left(-q_e \frac{v^2}{2} \frac{\partial f_e}{\partial v} E_0 e^{\gamma t} \right) w(t - t_0; \tau) e^{-i\omega_R t} dt$$

$$C_{E_{\parallel}}(\mathbf{v},t,\tau) = C\left(-q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} + \frac{1}{N} \sum_$$

Emily Lichko

faster particles

$$C_{E_{\parallel}}(\mathbf{v},t,\tau) = C\left(-q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} + \frac{1}{N} \sum_$$

Emily Lichko

faster particles

KITP

$$C_{E_{\parallel}}(\mathbf{v},t,\tau) = C\left(-q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} + \frac{1}{N} \sum_$$

Emily Lichko

faster particles

KITP

$$C_{E_{\parallel}}(\mathbf{v},t,\tau) = C\left(-q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} + \frac{1}{N} \sum_$$

Emily Lichko

faster particles

KITP

Starting with the Vlasov equation, we multiply by the energy for the given species ($m_sv^2/2$), to obtain an expression for the evolution of the phase space energy density

$$\frac{\partial w_s}{\partial t} = -\mathbf{v} \cdot \nabla \omega_s - q_s \frac{v^2}{2} \mathbf{E} \cdot \frac{\partial f_s}{\partial v} - q_s \frac{v^2}{2} (\mathbf{v} \times \mathbf{B})$$
where $w_s(\mathbf{r}, \mathbf{v}, t) = m_s v^2 f_s(\mathbf{r}, \mathbf{v}, t)/2$

(Klein+ 2016, Howes+2017)

Emily Lichko

Starting with the Vlasov equation, we multiply by the energy for the given species ($m_sv^2/2$), to obtain an expression for the evolution of the phase space energy density

$$\frac{\partial w_s}{\partial t} = -\mathbf{v} \cdot \nabla \omega_s - q_s \frac{v^2}{2} \mathbf{E} \cdot \frac{\partial f_s}{\partial v} - q_s \frac{v^2}{2} (\mathbf{v} \times \mathbf{B})$$

where $w_s(\mathbf{r}, \mathbf{v}, t) = m_s v^2 f_s(\mathbf{r}, \mathbf{v}, t)/2$

 Contributes zero net energy - only oscillations in the energy as a function of space and time

(Klein+ 2016, Howes+2017)

Starting with the Vlasov equation, we multiply by the energy for the given species ($m_sv^2/2$), to obtain an expression for the evolution of the phase space energy density

$$\frac{\partial w_s}{\partial t} = -\mathbf{v} \cdot \nabla \omega_s - q_s \frac{v^2}{2} \mathbf{E} \cdot \frac{\partial f_s}{\partial v} - q_s \frac{v^2}{2} (\mathbf{v} \times \mathbf{B})$$

where $w_s(\mathbf{r}, \mathbf{v}, t) = m_s v^2 f_s(\mathbf{r}, \mathbf{v}, t)/2$

- Contributes zero net energy only oscillations in the energy as a function of space and time
- Magnetic fields do no work

(Klein+ 2016, Howes+2017)

Starting with the Vlasov equation, we multiply by the energy for the given species ($m_sv^2/2$), to obtain an expression for the evolution of the phase space energy density

$$\frac{\partial w_s}{\partial t} = -\mathbf{v} \cdot \nabla \omega_s - q_s \frac{v^2}{2} \mathbf{E} \cdot \frac{\partial f_s}{\partial v} - q_s \frac{v^2}{2} (\mathbf{v} \times \mathbf{B})$$

where $w_s(\mathbf{r}, \mathbf{v}, t) = m_s v^2 f_s(\mathbf{r}, \mathbf{v}, t)/2$

- Contributes zero net energy only oscillations in the energy as a function of space and time
- Magnetic fields do no work

(Klein+ 2016, Howes+2017)

Starting with the Vlasov equation, we multiply by the energy for the given species ($m_s v^2/2$), to obtain an expression for the evolution of the phase space energy density

$$\frac{\partial w_s}{\partial t} = -\mathbf{v} \cdot \nabla \omega_s - q_s \frac{v^2}{2} \mathbf{E} \cdot \frac{\partial f_s}{\partial v} - q_s \frac{v^2}{2} (\mathbf{v} \times \mathbf{B})$$

where $w_s(\mathbf{r}, \mathbf{v}, t) = m_s v^2 f_s(\mathbf{r}, \mathbf{v}, t)/2$

- Contributes zero net energy only oscillations in the energy as a function of space and time
- Magnetic fields do no work

$$C_{E_{\parallel}}(\mathbf{v},t,\tau) = C\left(-q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}, E_{\parallel}\right) = -\frac{1}{N} \sum_{j=1}^N q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}}$$

It can be shown that when integrated over physical space and velocity space, this term is proportional to j.E.

(Klein+ 2016, Howes+2017)

It can be shown that when integrated over physical space and velocity space, this term is proportional to j.E.

(Klein+ 2016, Howes+2017)

It can be shown that when integrated over physical space and velocity space, this term is proportional to j.E.

(Klein+ 2016, Howes+2017)

It can be shown that when integrated over physical space and velocity space, this term is proportional to j.E.

(Klein+ 2016, Howes+2017)

The difficult aspect comes when we have an electric field that's composed of more than one wave

$$E = \sum_{n} E_{0,n} e^{\gamma_n t} e^{-i\omega_{R,n} t}$$

In that case, when we insert the electric field into our form of the field-particle correlation we get that the FPC is the sum of the short-time Fourier transform at each constituent frequency, summed together

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_{0,n} e^{\gamma_n t} w(t-t_0) e^{-i\omega_{R,n} t} dt$$

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} x_n(t) w(t - t_0) e^{-i\omega_{R,n} t} dt$$

The difficult aspect comes when we have an electric field that's composed of more than one wave

$$E = \sum_{n} E_{0,n} e^{\gamma_n t} e^{-i\omega_{R,n} t}$$

In that case, when we insert the electric field into our form of the field-particle correlation we get that the FPC is the sum of the short-time Fourier transform at each constituent frequency, summed together

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_{0,n} e^{\gamma_n t} w(t-t_0) e^{-i\omega_{R,n} t} dt$$

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} x_n(t) w(t-t_0) e^{-i\omega_{R,n}t} dt$$

The difficult aspect comes when we have an electric field that's composed of more than one wave

$$E = \sum_{n} E_{0,n} e^{\gamma_n t} e^{-i\omega_{R,n} t}$$

In that case, when we insert the electric field into our form of the field-particle correlation we get that the FPC is the sum of the short-time Fourier transform at each constituent frequency, summed together

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} -q_e \frac{v_{\parallel}^2}{2} \frac{\partial f_e}{\partial v_{\parallel}} E_{0,n} e^{\gamma_n t} w(t-t_0) e^{-i\omega_{R,n} t} dt$$

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} x_n(t) w(t-t_0) e^{-i\omega_{R,n}t} dt$$

- 1. Ability to better represent short-lived signals instantaneously
- 2. Cleaner signals in an environment with multiple dissipation processes

Main issue is that our models for the electric field and distribution function have both a real and imaginary component, but we can only measure the real part of each of these signatures

$$C_{E_{\parallel}} = \sum_{n} \int_{-\infty}^{\infty} x_n(t) w(t - t_0) \left[\cos(\omega_{R,n}) + i \sin(\omega_{R,n}) \right] dt$$

Equivalent to only looking at the real part of a Fourier transform. Both the frequency and phase information is included, but convoluted together.

Applying the wavelet transform to electric field data from **Gkeyll simulation of electron landau damping**

Applying the frequency-resolved FPC to a Gkeyll simulation of electron landau damping

