Field-particle correlation is a technique for determining what energy
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Field-particle correlation is a technique for determining what energy
transfer processes are actually important in a given element of plasma
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What is the Field-Particle Correlation (FPC)? _

Starting with the Vlasov equation, we multiply by the energy
for the given species (msv4/2), to obtain an expression for

the evolution of the phase space energy density
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The Field-Particle Correlation (FPC) signal of Landau
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Obtaining the Frequency-Resolved Field-Particle
Correlation (FR-FPC) ¢ B

Start with the field-particle correlation

vt 9 f. 1 <~ U df.
CE(v,t,T)=C(—qe | 2] ,En) =N 2 1 97 E)
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Obtaining the Frequency-Resolved Field-Particle
Correlation (FR-FPC) ¢ B

Start with the field-particle correlation WR
Cp(v,t,7) =C (—qe Uj g,l{; , En) = —% Jf:lqe vj giﬁ &l
E = Eyete wrt
Imagine that we have a single wave with frequency wr, damped at \/w

some rate y, and plug that into the FPC expression
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Obtaining the Frequency-Resolved Field-Particle
Correlation (FR-FPC) ¢ B

Start with the field-particle correlation WR
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And we get exactly a short-time
Fourier transform evaluated at the
frequency of the wave!
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Obtaining the Frequency-Resolved Field-Particle
Correlation (FR-FPC)
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Overview of the differences between the frequency-

Equivalent to only looking at the real part of a

Fourier transform. Both the frequency and phase
information is included, but convoluted together.

o 2
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w(t —to) [cos(wWr.n) + isin(wpr )| dt

By transforming the quantities individually first,
we can recover both the magnitude and phase
information as a function of time, frequency,
and velocity, then evaluate the relative phase
for each frequency and point in time.
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Overview of the differences between the frequency-
resolved FPC and traditional FPC

Equivalent to only looking at the real part of a
Fourier transform. Both the frequency and phase
information is included, but convoluted together.
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By transforming the quantities individually first,
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information as a function of time, frequency,
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Overview of the differences between the frequency-
resolved FPC and traditional FPC

Equivalent to only looking at the real part of a
Fourier transform. Both the frequency and phase
information is included, but convoluted together.
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Applying the wavelet transform to electric field data from Gkeyl|
simulation of electron landau damping at a single frequency
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Applying the wavelet transform to electric field data from Gkeyl|
simulation of electron landau damping at two frequencies
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Applying the wavelet transform to electric field data from Gkeyl|
simulation of electron landau damping at two frequencies
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Applying the frequency-resolved FPC to data from MMS
spacecraft
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Applying the frequency-resolved FPC to data from MMS
spacecraft

magnetopause ARTICLE
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Evidence for electron Landau damping in space
plasma turbulence

C.H.K. Chen!, K.G. Klein? & G.G. Howes® 3

How turbulent energy is dissipated in weakly collisional space and astrophysical plasmas is a
major open question. Here, we present the application of a field-particle correlation technique
to directly measure the transfer of energy between the turbulent electromagnetic field and
electrons in the Earth’s magnetosheath, the region of solar wind downstream of the Earth's
bow shock. The measurement of the secular energy transfer from the parallel electric field as

a function of electron velocity shows a signature consistent with Landau damping. This
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Applying the wavelet transform to electric field data from
Gkeyll simulation of electron landau damping
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Applying the wavelet transform to electric field data from
Gkeyll simulation of electron landau damping
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Fundamental limitation on the area in frequency-time
space and on the frequency resolution

1. Heisenberg-Gabor Limit - because time
and frequency are not independent variables,
the uncertainty in a frequency over a time
period is bounded by a constant, /.e.

AfAL > 1

2. Limitation on the ability to distinguish
peaked distributions of nearby frequencies
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Applying the frequency-resolved FPC to data from MMS
spacecraft
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Applying the frequency-resolved FPC to data from MMS
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Applying the frequency-resolved FPC to data from MMS
spacecraft
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Applying the frequency-resolved FPC to data from MMS
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Applying the frequency-resolved FPC to data from MMS
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Applying the frequency-resolved FPC to data from MMS

spacecraft
of T - L

20 | : -
ek | l '. "

) /u
FR_FPC |WT[E] (zg,t,w ||WT ||/2df/d || , w = 0.4372 - ” th,e . vy e e )HWT( ||/2df/d H)l os(@) , w = 1.0046 ><510'31

. 4

3 3 3

70 70 70
1, -2 -2

60 60 O 60
1, 11 11

50 50 50
= 1o o 0o = Ho

-+ = -+

40 40 40
-1 -1 -1

2 30 30
2 -2 2

o 50 20
( -3 -3 -3

10
10 /‘\ /‘\ -4 10 B | |

. | | | ‘
0 5 0 ' ' ' 5 °, o8 06 04 02 0 02 04 06 08 1 N
1 08 06 04 .02 02 04 06 0.8 1 1 08 06 04 02 0 02 04 06 08 1 ' ' ' ' 1ET ks
{z/‘
v, [1E7 ki /s] v [1E7 km/s] l

Emily Lichko KITP



Emily Lichko

Updated method of determining the
energy transfer between the fields
and particles from kinetic processes

Not only does this method add an
additional dimension to the
traditional field-particle correlation
method, but it provides better
resolution when there are competing
dissipation processes
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traditional field-particle correlation
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Obtaining the Frequency-Resolved Field-Particle
Correlation (FR- FPC)

A
Start with the field-particle correlation
v? O fe. 1 o 2 Ofe
t,T) = — (e B = —— . E
OE(Va 77_) C< q 2 I ) szlq 2 O
Because
to+7/2 i OFf. o0 i afe
Cetvtor)= [ (cager)de= [ (<a5eE) uit—toira 3
WR v
’ — <t <
where w(t —tg;7) = ! it £ .T/Q—t—t0+7/2
0 otherwise .
n And we get exactly a short-time

Fourier transform evaluated at the

Imagine that we have a single wave with frequency wr, damped at frequency of the wave!

some rate y, and plug that into the FPC expression
[ 02 9f | | < | |
co= [~ (S EOth) Wt — to 1) ntdt ——»  Cig = / p(Ow(t — to: )~ @Rt dL

2 Ov I I _OOI_I I I
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Field-particle correlation (FPC) of electron Landau
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Field-particle correlation (FPC) of electron Landau
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What is the Field-Particle Correlation (FPC)?

(v2/2)(85 f /Ov)E 10

Starting with the Vlasov equation, we multiply by the energy
for the given species (msv2/2), to obtain an expression for
the evolution of the phase space energy density

Ow; v? _ Of,
o =V Ve ey B

where ws(r,v,t) = mgv? fi(r,v,t)/2

fs
ov

02
qsi(v x B) -

o Ci(zo,v,t;,7 = 7.6 wye) = (1/N) Y77 (v*/2) (96 f;/0v) E;
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20

X 10'6
?"/”Ht.(:

d) f(]' dt"Cy(wg, v, 1", 7 = 7.6 wy) L10°
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(Klein+ 2016, Howes+2017)
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What is the Field-Particle Correlation (FPC)?

Starting with the Vlasov equation, we multiply by the energy SR
for the given species (msv2/2), to obtain an expression for
the evolution of the phase space energy density
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It can be shown that when integrated over physical space
and velocity space, this term is proportional to J-E

(Klein+ 2016, Howes+2017)
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Obtaining the Frequency-Resolved Field-Particle
Correlation (FR-FPC)

The difficult aspect comes when we have an

electric field that's composed of more than one
wave WR2

E = E Eg ,efntetwhnt

In that case, when we insert the electric field > >
into our form of the field-particle correlation we wWR Vi Vi
get that the FPC is the sum of the short-time / /

Fourier transform at each constituent frequency, 0 / 0)

summed together

I_I Iﬁ
“ OJe Eone’™ w b (t —tp)e —WRnt gy — CE” Z/ a:n t — to) ~WR,nlt

Cg) = Z/ —I qezall I I |
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Overview of the differences between the frequency-
resolved FPC and traditional FPC

1. Ability to better represent short-lived
signals instantaneously

2.Cleaner signals in an environment with
multiple dissipation processes

Main issue is that our models for the electric field
and distribution function have both a real and
imaginary component, but we can only measure
the real part of each of these signatures

Cpy = Z/

Equivalent to only looking at the real part of a
Fourier transform. Both the frequency and phase
information is included, but convoluted together.

Jw(t — to) [cos(wr.n) + isin(wr.n)] dt

Emily Lichko

i B p—
-
: \\\\
ey
§ o o
S o
E?-: _ -0.5 | ! | | I \“\‘-—‘.L_
— 0 0.5 1 1.5 2 2.5 3 3.5
O
— 1 - ! - !
+oosg \ / 7 N N / \ /
:i\ O~——--—&—~——~——————— ——————-——-—__’"".__., _______ A_Z .
3 05 | |
% .,
- _1 |
0 2 4 6 8 10
;
2
= Y of.

Eo ne" w(t — to)e_in'”tdt

| - ,_OOI 2 8’0” ’ I I I

KITP 24



Applying the wavelet transform to electric field data from
Gkeyll simulation of electron landau damping

Wavelet
;\ STFT f (WT)

AN

STFT (short-time-Fourier-trans s WT (wavelet-trans formation )

£ A
sk /0 A ¢ WA
21 W /

i i | af

STFT (short-time-Fourier-trans formation) ’ WT (wavelet transformation)
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Applying the frequency-resolved FPC to a Gkeyll
simulation of electron landau damping

80

100

'.&",,

100
80
60
40
20

100
80
60
40
20

FPC WT

0

l l"o h ¢

FPC WT [ dt"

KITP

10°
| 3
2. | 125
1.5 . |
2
1. |
\ 1.5
0.5 -
1
0l
100 . - 5 0.5
50 o
t 0 5 v/

26



