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ALPS (the Arbitrary Linear Plasma Solver) is a parallelised numerical code that solves
the Vlasov-Maxwell dispersion relation for hot (even relativistic) magnetised plasmas.
ALPS allows for any number of particle species or components with arbitrary gyrotropic
equilibrium velocity distribution functions supporting waves with any direction of propa-
gation with respect to the background magnetic field B. In this set of notes prepared for
the KITP 2024 "Interconnections between the Physics of Plasmas and Self-gravitating
Systems" program, we introduce the underlying method, describe some of the numerical
implementations, discuss open problems, and attempt to identify potential overlaps with
adjacent fields. Caveat lector, as typographical error likely abound through this draft.

1. Introduction
Numerical plasma dispersion solvers have been extensively used to study plasma waves,

in particular their growth or damping rates as a function of plasma conditions (see Gary
1993; Verscharen et al. 2013; Klein et al. 2017; Klein et al. 2021; McManus et al. 2024, for a
biased selection of mostly space plasma studies). Typical linear plasma dispersion solvers
assume a particular analytic form for the underlying velocity distribution (VDF) fj(v),
e.g. a bi-Maxwellian (WHAMP (Roennmark 1982), PLUME (Klein & Howes 2015), or NHDS
(Verscharen & Chandran 2018)) or a bi-Kappa (DSHARK (Astfalk et al. 2015)) distribution.
Such an assumption enables a closed form expression in terms of known special functions
for the integrals embedded within the dispersion relation. However, many space and
astrophysical plasmas, or other hot and diffuse plasmas, are not well represented by bi-
Maxwellian, or even bi-Kappa, distributions. Thus, a more sophisticated treatment of
the dispersion relation is required.

The Arbitrary Linear Plasma Solver (ALPS), recently made publicly available and open
source (BSD 2 license) (Klein et al. 2023) can determine complex-valued dispersion rela-
tions for plasma waves associated with arbitrary VDFs. The initial ALPS implementation
is described in Verscharen et al. (2018), though some additions to the code has been
made since publication, some of which are described in these notes (which will be be
detailed in future publications).
ALPS is an MPI parallelised numerical code written in FORTRAN90 that solves the

Vlasov-Maxwell dispersion relation for a hot, magnetized plasma. ALPS allows for any
number of particle species with arbitrary gyrotropic equilibrium distribution functions
supporting waves with any direction of propagation with respect to the background
magnetic field, and ALPS can include the effects of special relativity in the plasma
response.

† Email address for correspondence: kgklein@arizona.edu
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Instead of using parameterized values for a collection of analytic functions, ALPS uses
as input the phase-space density on a discrete grid of parallel and perpendicular velocity
fs(v⊥, v∥), (or momentum grid for relativistic calculations fs(p⊥, p∥)), and evaluates the
dispersion relation through a direct numerical integration of the gradients of fs. This
method has been applied to spacecraft data from both MMS (Jiang et al. 2022, 2024)
and Wind (Walters et al. 2023), showing significant deviations of wave behavior from
predictions calculated using simple analytic functions.

Aspects of this code address two of the workshop’s focus topics:

• Stability & Landau damping – how can we compute the dispersion relation and
stability of a general kinetic equilibrium?

• Numerical methods and diagnostics – how can we use numerical simulations to
advance theoretical frameworks and to understand their potential pitfalls?

2. Underlying Equations
2.1. Wave Equation

As we are working with moving charged particles, we will need to invoke Maxwell’s
equations for the spatial and temporal variations of the electric and magnetic fields E
and B, specifically Ampere:

∇×B =
4πj

c
+

1

c

∂E

∂t
=

1

c

∂D

∂t
(2.1)

and Faraday

∇×E = −1

c

∂B

∂t
. (2.2)

Assuming we have a spatially homogeneous system, and have plane wave solutions of the
form exp[i(k · r− ωt)], where ω = ωr + iγ is the complex frequency and k is wavevector,
the electric displacement D is related to the electric field via the dielectric tensor ϵ

D(ω,k) = ϵ(ω,k) ·E(ω,k). (2.3)

The dielectric tensor is comprised by the summation over the contributions from the
constituent plasma components:

ϵ(ω,k) = 1 +
∑
s

χ
s
(ω,k) (2.4)

where χ
s

is the susceptibility of the sth plasma component, defined below.
We can perform the usual Fourier analysis, and combine Eqns. 2.1 and 2.2 to homo-

geneous plasma wave equation

k× (k×E) +
ω2

c2
ϵ ·E = 0. (2.5)

or written more compactly as

Λ ·E =

 ϵxx − n2
z ϵxy ϵxz + nxnz

ϵyx ϵyy − n2
x − n2

z ϵyz
ϵzx + nxnz ϵzy ϵzz − n2

x

 Ex

Ey

Ez

 = 0. (2.6)

where n = ck/ω is the index of refraction. The solutions of det |Λ(ω,k)| = 0 are the
normal modes supported by the prescribed equilibrium.
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The total plasma current j is defined in terms of the plasma component bulk velocities
Us

j =
∑
s

js =
∑
s

nsqsUs (2.7)

where the density and electric charge of the components are ns and qs respectively.
By relating the current to the susceptibility via

js = − iω

4π
χ
s
·E. (2.8)

we will be able to connect the wave equation to the distribution of the plasma particles,
as discussed in the following subsection.

2.2. The Hot, Magnetized, Plasma Dispersion Relation
To quantify the impact of the shape of the velocity distribution fs(r,p, t)† on the

linear modes supported by a plasma equilibrium, we note that the bulk velocity utilized
in Eqn. 2.7 is simply the first moment of the perturbed VDF δf ‡

j =
∑
s

js =
∑
s

qs

∫
d3pvδfs(r,p, t) = − iω

4π
χ
s
·E (2.9)

where the VDF has been decomposed into a time averaged equilibrium and a first-order
perturbation

fs(r,p, t) = f0,s(p) + δfs(r,p, t). (2.10)
The VDF for a collisionless plasma evolves according to the Vlasov equation

∂fs
∂t

+ v · ∂fs
∂r

+ qs

(
E+

v

c
×B

)
· ∂fs
∂p

= 0. (2.11)

For a particle trajectory r(t), the rate of change of f along the trajectory is

df

dt
=

∂f

∂t
+

∂f

∂r
· dr
dt

+
∂f

∂p
· dp
dt

. (2.12)

In a static magnetic field, the zero-order trajectory of a charged particle is

dr

dt
= v and

dp

dt
= qs

v

c
×B0, (2.13)

which allows us to assert by inspection of the Vlasov equation that the equilibrium
distribution is time stationary (

dfs,0
dt

)
0

= 0. (2.14)

The first order Vlasov equation for the rate of change of the perturbed VDF along the
zero-order trajectory is (

dδfs
dt

)
0

= −qs

(
E1 +

v

c
×B1

)
· ∂fs,0

∂p
, (2.15)

which admits a solution for the perturbed distribution via integration along the trajectory

δfs(r,p, t) = −qs

∫ t

−∞
dt′
[
E1(r

′, t′) +
v′

c
×B1(r

′, t′)

]
· ∂fs,0(p

′)

∂p′ (2.16)

† ALPS evaluates fs on a momentum, rather than velocity grid to ease the transition to the
relativistic limit.

‡ A detailed derivation is presented in Chapter 10 of Stix (1992).
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Following several pages of identities, transformations, and substitutions, we arrive at
an expression for the susceptibility in terms of integrals over functions of momentum
derivatives of the equilibrium VDF

χ
s
=

ω2
p,s

ωΩ0,s

∫∞
0

2πp⊥dp⊥
∫∞
−∞ dp∥ (2.17)[

ê∥ê∥
Ωj ]s
ω

(
1
p∥

∂fs,0
∂p∥

− 1
p⊥

∂fs,0
∂p⊥

)
p2∥ +

∑∞
n=−∞

Ωsp⊥U
ω−k∥v∥−nΩs

T
n

]
where we define the functions

U =
∂f0,s
∂p⊥

+
k∥

ω

(
v⊥

∂f0,s
∂p∥

− v∥
∂f0,s
∂p⊥

)
(2.18)

and

T
n
=


n2J2

n

z2

inJnJ
′
n

z

nJ2
np∥

zp⊥

− inJnJ
′
n

z (J ′
n)

2 −iJnJ
′
np∥

p⊥
nJ2

np∥
zp⊥

iJnJ
′
np∥

p⊥

J2
np

2
∥

p2
⊥

 . (2.19)

The directions ∥ and ⊥ are defined with respect to the mean magnetic field direction
B0. Jn is the nth order Bessel function with argument z = k⊥v⊥/Ωs. Two characteristic
timescales are defined in terms of the plasma frequency ωps =

√
4πnsq2s/mj and the

cyclotron frequency Ωs = qsB0/msc; Ω0,s only includes the rest-mass in the denominator,
while Ωs includes the appropriate relativistic correction. Most traditional approaches
further reduce Eqn. 2.17 by assuming an analytic form for f0,s that simplifies the
integrals. ALPS instead directly integrates these derivatives encoded in this equation on
a user defined discrete grid. There are two particular issues that arise in this numerical
evaluation for the non-relativistic† case that must be handled carefully, dealing with the
integration near poles (§3.1) and the handling of the analytic continuation of the integral
into the complex plane (§3.2).

3. Numerical Implementation
After reading the velocity distribution values in on a user defined grid in (p⊥, p∥), ALPS

will either accept user inputs for N initial guesses for the complex frequencies ω = (ωr, γ)
that satisfy the wave equation or will solve Eqn 2.5 over a specified grid of (ωr, γ) values,
and then identify the first N solutions that satisfy det |Λ(ω,k)| = 0. With these N
solutions identified, ALPS will perform 1D wavevector scans,

• for fixed k⊥ and varying k∥, fixed k∥ and varying k⊥,
• for fixed θ = arctan k⊥/k∥ and varying |k|,
• between two specified (k⊥, k∥) values,

or a 2D wavevector scan over specified ranges of k⊥ and k∥.
With the complex frequency determined, the complete eigenfunction of the densities

δns, velocities δUs, and electromagnetic fields E and B can be calculated through
evaluations of the linearized Maxwell’s equations, the continuity equation, and the wave
equation Eqn. 2.5, using the routines implemented in PLUME(Klein & Howes 2015).

We choose the complex Fourier coefficient for Êx ≡ Ex/E⊥,1 = 1, where E⊥,1 is an
arbitrary real constant used to specify the overall amplitude of the linear eigenfunction,

† For the relativistic issues, see §3.3 of Verscharen et al. (2018).
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and solve for the other components using Eqn. (2.5) in terms of E⊥,1, yielding

Ê|| ≡
E||

E⊥,1
=

ΛyxΛzy − ΛyyΛzx

ΛyyΛzz − ΛyzΛzy
(3.1)

and

Ê⊥,2 ≡ E⊥,2

E⊥,1
= −Λzx + Λzz(E||/E⊥,1)

Λzy
=

ΛzxΛyz − ΛzzΛyx

ΛyyΛzz − ΛyzΛzy
, (3.2)

where Λij are the elements of the 3× 3 matrix Λ dispersion tensor in (2.6).
Combining these solutions for the complex Fourier coefficients of the components of E

with the solutions for the complex frequency ω and wave vector k = k⊥x̂+ k∥ẑ, we can
solve for the complex Fourier coefficients of the magnetic field eigenfunction using the
Faraday’s Law, Eqn. 2.2, Fourier transformed in time and space, ωB = ck×E, giving

B⊥,1

E⊥,1
= −ck∥(E⊥,2/E⊥,1)

ω
, (3.3)

B⊥,2

E⊥,1
=

ck∥ − ck⊥(E||/E⊥,1)

ω
, (3.4)

and
B||

E⊥,1
=

ck⊥(E⊥,2/E⊥,1)

ω
. (3.5)

We can determine the perturbed bulk velocity for each component Us by recognizing
that the total current linear density (including any parallel flow) due is js = qs(n0sUs +
n1sVsẑ). Using the susceptibility tensor to calculate js through (2.9) yields

Us = − iω

4πqsn0s
χs(k, ω) ·E− δns

n0s
Vsẑ. (3.6)

With these solutions for the perturbed bulk velocity Us, we can use the linearized
continuity equation (including the equilibrium parallel flow Vs),

∂δns

∂t
+ Vs

∂δns

∂z
= −n0s∇ ·Us, (3.7)

to solve for the complex Fourier coefficient of the normalized number density fluctuation,
δns/n0s, given by

δn1s

n0s
=

k⊥Uxs + k∥Uzs

ω − k∥Vs
. (3.8)

We can also compute the power emitted or absorbed by each component, following
the routines implemented in PLUME(Klein & Howes 2015), which follow Stix (1992)’s
expression

γs(k)
ωr(k)

=
E∗(k) · χa

s
(k) ·E(k)

4WEM(k)
, (3.9)

where χa

s
(k) represents the anti-Hermitian component of the susceptibility for species s

evaluated at γ = 0 and E∗ represents the complex conjugate of the fluctuating electric
field, and WEM is the electromagnetic wave energy.

TO DO: Currently working on implementing an additional diagnostic, already present
in PLUME that splits the heating rates into transit time, Landau, and cyclotron damping
components, following prescription laid out in Appendix C of Huang et al. (2024).
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3.1. Integration Near Poles
We use a simple trapezoidal integration scheme. This scheme breaks down near poles,

e.g. integrals of the form

I(p⊥) =

∫ ∞

−∞
dp∥

ΩjUT
n

ω − k∥v∥ − nΩj
. (3.10)

When the imaginary component γ of the complex frequency ω = ωr + iγ is sufficiently
small, the denominator of the integral becomes small enough to lead to large numerical
errors. We currently resolve this issue by rewriting the integral as

I =

∫ ∞

−∞
dx

g(x)

x− tr − iti
(3.11)

evaluating it over a narrow symmetric interval,

I =

∫ tr+∆

tr−∆

dx
g(x)

x− tr − iti
+ rest (3.12)

and then decomposing the integrand near tr into odd (which disappears over the symetric
integral) and even parts,

I = 1
2

∫ tr+∆

tr−∆
dx
[

g(x)
x−tr−iti

− g(2tr−x)
−x+tr−iti

]
(3.13)

+ 1
2

∫ tr+∆

tr−∆
dx
[

g(x)
x−tr−iti

+ g(2tr−x)
−x+tr−iti

]
+ rest. (3.14)

The even integral reduces to

I =

∫ tr+∆

tr

dx

[
g(x)

x− tr − iti
+

g(2tr − x)

−x+ tr − iti

]
+ rest. (3.15)

We then perform a trapezoidal scheme over a fine grid between tr and tr + ∆, which
works as long at |ti| isn’t too small. If |ti| is too small, we performing a truncated Taylor
expansion to reduce these numerical errors

I =

∫ tr+∆

tr

dx

[
2itig(tr)

(x− tr)2 + t2i
+

2g′(tr)(x− tr)
2

(x− tr)2 + t2i

]
+ rest. (3.16)

where the first term on the right hand side can be expressed as it’s small-ti limit∫ tr+∆

tr

dx
2itig(tr)

(x− tr)2 + t2i
= iπg(tr)sgn(ti). (3.17)

These results converge, but are numerically expensive to evaluate, and currently require
the user to specify when to switch between the two methods of evaluation, making
future improvements to the numerical integration schemes that can more directly handle
singularities a priority.

3.2. Hybrid Analytic Continuation
When the solutions are damped (γ < 0) the integration of Eqn. 2.17 necessitates an

analytic continuation of f0,s into the complex p∥ plane. This is ’simple’ enough if f0,s
is a known analytic function, evaluating the distribution at a complex p∥† As we only

† Again, the relativistic case is more complex, given the non-trivial momentum dependence
of the resonant denominator in that limit; see §3.3 fromVerscharen et al. (2018) gory details,
where we use the method suggested by Lerche (1967) to transform from (p∥, p⊥) to (Γ, p̄∥) and
make the solution tractable.
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have a value for f0,s for p ∈ R, we adopt two different schemes to numerical extend the
function.

For both cases, we follow Landau (1946)’s prescription for the integration of a contour
CL that lies below the complex poles of the integrand:

I(p⊥) =

∫
CL

dp∥G(p⊥, p∥) =


∫ +∞
−∞ dp∥G(p⊥, p∥) if γ > 0,

P
∫ +∞
−∞ dp∥G(p⊥, p∥) + iπ

∑
ResA(G) if γ = 0,∫ +∞

−∞ dp∥G(p⊥, p∥) + 2iπ
∑

ResA(G) if γ < 0,

(3.18)

For our case, G has one simple pole∑
ResA(G) = −mj

|k∥|
ΩjUT

n

∣∣∣∣
p∥=ppole

, (3.19)

that has to be evaluated for the six unique terms in T
n
. This can be done in two different

ways, either through a fit of f0,s to an arbitrary number of analytic functions, or by a
polynomial basis representation using a generalized linear least squares approach. One
The code evaluates the fits separately at each p⊥, so that no assumption is made as to
the structure of f0s in the p⊥-direction. ALPS uses these functions only if a pole is
within the integration domain (the momentum range provided in the input
VDF grid) and only if γ ⩽ 0.

3.2.1. Old Approach: Functional Fitting
In the classic (2018) version of ALPS, in order to calculate the analytic continuation,

we allowed the user to specify an arbitrary number (usually 1 or 2, corresponding to core-
and-beam structures seems in in-situ solar wind observations) of analytic functions, each
with their own handful of defining parameters. The cannonical case was used drifting
bi-Maxwellians

f0j =
1

π3/2m3
jw

2
⊥jw∥j

exp

(
− p2⊥
m2

jw
2
⊥j

− (p∥ −mjUj)
2

m2
jw

2
∥j

)
, (3.20)

but bi-kappa

f0j =
1

m3
jw

2
⊥jw∥j

[
2

π(2κ−3)

]3/2
Γ̃ (κ+1)

Γ̃ (κ−1/2)
(3.21)

×
{
1 + 2

2κ−3

[
p2
⊥

m2
jw

2
⊥j

+
(p∥−mjUj)

2

m2
jw

2
∥j

]}−(κ+1)

, (3.22)

(Γ̃ is the Gamma function, not to be confused with the Lorentz factor Γ ) and Jüttner
distributions

f0j =
1

2πm3
jcw

2
jK2(2c2/w2

j )
exp

(
−2

c2

w2
j

√
1 +

|p|2
m2

jc
2

)
; (3.23)

were also included in the initial release. Additional functions, including two other repre-
sentations of the Jüttner distribution as well as a bi-Moyal distribution

f0,j(p̂_⊥, p̂_∥) = u1exp[0.5(yu4p̂
2_⊥+u2(p̂_∥−u3)

2−exp(yu4p̂
2_⊥+u2(p̂_∥−u3)

2))],
(3.24)

were added based upon community request. At each p⊥ value, a 1-D automated
Levenberg-Marquardt fit is performed as a function of p∥ (Levenberg 1944; Marquardt
1963). For p⊥ = 0, the user defined initial guesses are used to start the fit; the code then
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iterates to larger p⊥ values, using the best fit values from the previous p⊥ array as initial
guesses for the p⊥ array. This process works well for sufficiently smooth functions, and
close enough initial guesses. However, in applying the code to more complicated VDFs,
two obvious difficulties arose;

1) Even when a good set of initial guesses were selected, the fitting routine could fail
at larger p⊥ values, causing the entire code to halt.

2)Even when the fits converged, the small number of functions used for the analytic
representation lead to discrepancies as solutions pass γ = 0. These discrepancies arise for
two reasons:

• The velocity derivative of f0j [(ω − nΩs)/k∥] is discontinuous when evaluated at γ > 0
and γ < 0.

• If the velocity moments of the fit (e.g. the density or the bulk velocity) are different
from the velocity moments of the actual VDF, the total charge and current will be
different for the two halves of the complex plane.

These discrepancies can be small, leading to slight differences that don’t impact the
mode structure, but can lead to a ’sharp edge’ that causes the numerical (e.g. Newton-
secant) search to jump solutions (or lose the solution entirely).

These discrepancies can also be large, especially if the net current is significantly
different between the input VDF and the fitted function(s).

These issues lead to the development of a new approach to perform the hybrid analytic
continuation, a polynomial basis representation.

3.2.2. New Approach: Polynomial Basis Representation
Instead of representing f0,s with one or a handful of physically representative fitted

analytic functions, we have (over the last few months) opted to instead implement a
General Linear Least Squares fit (§15.4 of Press et al. 1992) of f0(p⊥, p∥). Specifically,
we are finding the parameters ak for the model

y(x) =

M−1∑
k=0

akXk(x) (3.25)

where Xk(x) are our basis functions. For the initial implementation, we have selected the
Chebyshev polynomials of the first kind Tk(x) as the basis function,

T0(x) = 1 (3.26)
T1(x) = x (3.27)

Tn+1(x ) = 2xTn(x)− Tn−1(x) (3.28)

but we intend on allowing the user to select other basis functions as an future code
option, e.g. the ever popular Hermite functions (Zocco & Schekochihin 2011; Adkins &
Schekochihin 2018). As Tn are bound between [−1, 1], we perform a change of variables
from p∥ to x

x =
p∥ −

(
pmax
∥ + pmin

∥

)
/2(

pmax
∥ − pmin

∥

)
/2

(3.29)

where pmax,min
∥ are the maximum and minimum values of the input VDF grid. Addition-

ally, we fit to log10[fs0] rather than fs0 to cover the full range of VDF structure and not
soley the structure near the peak.

As with the functional fitting approach, this is a purely one dimensional method, fitting
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f0,s(p∥) separately for the n⊥ rows in the input VDF grid; we write the VDF slice that
we will be fitting as yi, which is known at N values of x.

The solution is performed via the ’Normal Equations’, solving

M−1∑
j=0

αkjaj = βk (3.30)

where

αkj =

N−1∑
i=0

Xj(xi)Xk(xi)

σ2
i

(3.31)

and

βk =

N−1∑
i=0

yiXk(xi)

σ2
i

. (3.32)

If errors in the knowledge of yi are known, one could set σi to non-unity values; for
now, we have set to 1∀xi. Eqn. 3.30 is solved using the dgemm, dgemv, and dgesv LAPACK
routines.

In comparisons between the two hybrid analytic continuation methods, the polynomial
basis produces the same results for simple VDFs as the functional fitting method, and
is superior to previous functional fitting method for very ’wiggly’ VDFs in terms of its
smoothness across γ, due to improved accuracy of ∂vf0,j for all ω and k values, as well
as and in correctly capturing the component density and current.

To illustrate this, let’s choose a pathological case†. Fig. 1 illustrates the fitting of
a slice of fp(p∥) for p⊥ = 0 using the old core+beam method, as well as the updated
GLLS method. We can see that the representation of fp does not match the actual at all
points in p∥. Additionally, the value of the proton current

∫
dvv∥fp(v) is -0.153 qpnpvA,

compared to 0.0023561qpnpvA for the direct integration of the input fp. As the electrons
are set to have a current balancing the integrated current, the core+beam representation
has a discontinuity in the represented current as the solution passes over γ = 0, leading
to abrupt changes in the mode structure for γ < 0.

To suggest the necessary order for the GLLS method, consider Fig. 2
So, are the modes that ALPS finds real? To investigate this, we consider the actual

proton VDF, for this case taken from a Wind spacecraft observations, fwind, as well as a
two-component proton VDF of the best fit to the actual proton VDF, fbM . At each point
in v⊥, v∥, we calculate ∆f ≡ fwind − fbM , and then construct N VDFs that smoothly
vary between the two extreme cases,

fi(v⊥, v∥) = fwind(v⊥, v∥) +
i∆f(v⊥, v∥)

N − 1
(3.33)

for i ∈ [0, N ].
The normal mode structure for these solutions at a fixed (k⊥, k∥)dp = (0.001, 0.0025)

is illustrated in Fig. 3. We see that at this wavevector, some of the modes are unaffected,
e.g. the forward Alfvén and fast modes, while the compressive modes and especially the
backwards fast mode has a significant change in the damping rate. The fact that we have
a continuous path for the solutions of fi is indicative that the solutions are are least
mathematically correct.

† Note that the cases investigated in Walters et al. (2023) did not have this magnitude of an
unphysical current added via the the hybrid analytic continuation with the core+beam fitting;
repeating those calculations with the GLLS method yields quantitatively similar results.
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Figure 1. Comparison of fp,0(p⊥ = 0, p∥) (black line) representations using a two Maxwellian
(red) method compared to three GLLS fits with Chebyshev functions.

So, does the stability of these solutions change? In Fig. 4, we plot the [ωr, gamma](k∥)
dispersion relations for eight solutions, namely the slow, Alfven, fast forward and back-
ward waves and the two ω ∼ 0 ’entropy’ modes for fixed k⊥dp = 0.001.‡ We see that, for
most of the solutions, ωr remains relatively unchanged, with two exceptions; the forward
fast and slow modes appear to undergo a mode conversion, similar to those seen near
exceptional points ¶ and the strong damping of the proton cyclotron resonance acts to
slow, and eventually reverse, the propagation direction of the Alfven solution at different
k∥ values for different fi’s. The regions of wavevector support for unstable mode growth,
as well as the amplitude of the most unstable mode, do change for the Alfven solutions.
To better highlight this behavior, we plot in Fig. 5 a parameteric plot of the dispersion
relations. The changes in which modes are unstable (e.g. the Forward Alfven solution
is effectively stable in the bi-Maxwellian representation, while it becomes unstable for
the fwind case), as well as the frequencies that resonant with fp to drive the backwards
Alfvén ion-cyclotron instability.

Open Question: how far to extend into complex momentum space?
How large of a Im(p∥) should we trust these extensions?

‡ See discussion in §2 of Verscharen et al. (2016) and Kunz et al. (2020) for detailed discussions
of slow and entropy modes.

¶ Exceptional points satisfy |Λ(ω)| = 0 and dω|Λ(ω)| = 0 and act as branch points that allow
continuous variations in f to smoothly vary between different normal mode solutions; c.f. the
Appendix of Klein & Howes (2015)
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Figure 2. Isocontours of constant Λ for ALPSsolutions GLLS analytic continuation with varying
orders of Chebyshev polynomials. Identified solutions with Λ = 0 are shown with dots. Poor
solutions for the O(10) fit illustrate the discontinuity across γ = 0, while nearly identical normal
mode solutions for O(40) and O(50) suggest a convergence for the description of the damped
mode solutions.

3.3. Specifying Analytic Functions
Since the 2018 code release, we have also added to ALPS the ability to specify any

analytic form for f(v⊥, v∥), which allows the direct calculation of the appropriate integrals
on a specified grid, as well as the immediate extension to complex p∥ values with out
the need for any fitting or polynomial representations. While useful, this isn’t directly
applicable to cases where a simulation or model isn’t easily expressible in analytic
form, but can be quite useful when a theory predicts an analytic form (e.g. a bi-Moyal
flattop distribution) so that differences against standard bi-Maxwellian predictions can
be quantified.

3.4. ’Hybrid’ Treatment for Select Components
For numerical expediency, the code allows users to declare if a component is to

be treated as a known analytic function, e.g. if the electrons can be treated as a
biMaxwellian, specifically using the formalism from NHDS (Verscharen & Chandran 2018).
In these cases, the susceptibility for those components are calculated using the much
more numerically efficient bi-Maxwellian expressions, rather than direct integration of the
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Figure 3. Isocontours of constant Λ for ALPSsolutions using fwind (blue lines) and fbM (red).
Identified solutions with Λ = 0 are shown with dots, with the fi cases illustrated connecting the
blue and red solutions.

momentum derivatives. This ’hybrid approach’ significantly decreases the computational
costs, and is quite useful in cases where some of the components are fairly treated as cold
or a simple Maxwellian, e.g. evaluating hybrid nonlinear plasma simulations.

4. Open Questions and Future Calculations
4.1. Improved Numerical Methods

As noted in several of the subsections, many of the numerical methods are fairly basic
implementations, e.g. trapezoidal integration, and should be improved; any suggestions
on better methods that have worked for other kinetic systems would be appreciated. This
will be quite helpful for

4.2. ’Automated’ Instability Determination
Determining if a plasma is unstable can be a time consuming hunt across complex

frequency space. Rather than inspecting the pole structure over the (ωr, γ), one can
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Figure 4. Dispersion relations for eight normal mode solutions for k⊥dp = 0.001 and varying
k∥dp calculated using ALPSfrom the extreme fwind and fbM arrays, as well as the intermediate
fi cases.
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solutions.

follow Nyquist (1932) and simply integrate the contour integral

Wn(k) =
1

2πi

∮
dω

det |Λ(ω,k)| (4.1)
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Figure 6. The real (left column) and imaginary (right column) components of the continued
distribution into the complex parallel momentum plane, evaluated using either a bi-Maxwellian
fit (top row) or the GLLS routine for 50 order fit.

As det |Λ(ω,k)| = 0 represents the normal modes solutions of the plasma, when taking
the contour in Eqn. 4.1 over the upper half plane we get a count of the number of unstable
modes with γ > 0 (see Fig. 8) By iteratively performing the contour integral along path
parallel to but above the real axis, we can additionally determine the growth rate of the
fastest growing mode.

It can be shown that an equivalent method of evaluating Eqn 4.1 is to map the value
of |Λ|−1 along the line from (ωr → −∞, γ = 0) to (ωr → ∞, γ = 0) to a parametric curve
in (|Λ|−1

R , |Λ|−1
I ) space where R and I identify the real and imaginary components of the

complex valued |Λ|−1. constructing a “Nyquist diagram.” The number of times this curve
encircles the origin (|Λ|−1

R , |Λ|−1
I ) = (0, 0), an integer defined as the winding number

Wn, equals the number of unstable normal modes the system supports. We evaluate
this number using established methods from applied maths Shimrat (1962); Hormann &
Agathos (2001), illustrated in Fig. 9.

This has been implemented for the bi-Maxwellian solver PLUME, (Klein et al. 2017,
2019; Martinović et al. 2021), but as of yet hasn’t been applied to ALPS due to the
computational cost of calculating Λ(ω,k).

4.3. Non-Gyrotropy
Especially near shocks and other discontinuities, the VDFs can become significantly

agyrotropic, with these departures driving a plethora of instabilities, e.g. the electron
cyclotron drift instability (ECDI) (Forslund et al. 1970; Umeda et al. 2012). Re-working
the maths between Eqn. 2.16 and 2.17 without integrating over the gyrophase of the
particles is a possible direction for an extension of, or a successor code to, ALPS.
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Figure 7. Columns as Fig. 6, but for a more realistic VDF (drawn from a Pegasus++ nonlinear
simulation of imbalanced turbulence), comparing the continuation of fp for the bi-Maxwellian
fit, as well as GLLS fits of order 50, 30, and 10.



16 K.G. Klein

Figure 8. Instability calculation via the Nyquist criterion contour integral evaluation. The
number of solutions (red dots) inside the blue contour represent the number of unstable modes;
at left is a stable case, while at right, the additional temperature anisotropy has made the
zero-frequency mode mirror unstable. Repeatedly shifting the blue line to larger γ values will
result in an identification of the maximum growth rate, the number of solutions in the contour
will drop to zero. Reproduced from Verscharen et al. (2019).

Figure 9. Schematic of winding number counting method for stable (left) and two unstable
cases. Taken from Klein et al. (2017)

4.4. Spatial Inhomogeneity

Rumor has it that this was discussed in detail last week. I would be quite interested
in discussing if/how ALPS could be extended to consider inhomogeneous systems.

4.5. Self-Gravity

If we replace the Lorentz force term in Eqn 2.15 with the appropriate self-gravity
expressions, a stellar version of ALPS should be feasible to construct.
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5. Code Availability
The code, written in FORTRAN90, is available via an open source BSD 2-Clause License

at https://github.com/danielver02/ALPS with a full tutorial on its use at https:
//danielver02.github.io/ALPS/ (Klein et al. 2023).
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