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A new formulation of the quasilinear theory of weakly turbulent plasmas is presented, which explicitly
separates resonant and nonresonant wave-particle interactions from the outset. This is achieved by making
a canonical transformation to “oscillation center variables” before attempting to solve the Vlasov equation.
A systematic method of constructing the generating function to any order in the wave amplitude is
presented, based on a variant of Hamilton-Jacobi perturbation theory. Momentum and energy split
naturally into a wave and a particle component. The results are generalized to apply to weakly
inhomogeneous plasmas, and verified by demonstrating momentum and energy conservation.

I. INTRODUCTION

Since its introduction,!? there have been two points
of view regarding the quasilinear theory of weak plasma
turbulence. The first'? is to derive the theory more or
less rigorously from the Vlasov equation, and the
second! is to proceed more heuristically from a quantum
mechanical picture in which the plasma waves are
quantized (plasmons), and the basic process in quasi-
linear theory is taken to be absorption or emission of a
plasmon by a particle.

The two methods are in agreement on the resonant
part of the diffusion tensor (in the classical limit, of
course). However, the two methods differ® as to their
prediction of the effect of nonresonant waves on the
(space or ensemble) average particle distribution
function (f(x, p, ¢)). In the equation for {f) derived
from the Vlasov equation, the nonresonant contribu-
tion can be integrated explicitly,® and yields the
broadening effect on {f) of the “sloshing®”’ of the
particles back and forth. In the quantum approach,
no such broadening effect is included. Although the
sloshing effect is small (proportional to the square of the
wave amplitude), and nonsecular (as opposed to diffu-
sion), it is essential to include it when taking moments
of the quasilinear diffusion equation (in particular,
to show that it conserves energy and momentum).

Nevertheless, the moments of the quantum diffu-
sion equation look “right” in the sense that they assign
to the plasmons their expected momenta 7%k, and
energies fiwy. The heuristic appeal of the quantum
picture is such that one wonders if the conservation
laws cannot be saved by a reinferpretation of the back-
ground particle distribution function such that the
sloshing component (which, after all, belongs to the
waves) is taken out. The author’s previous work®?
suggests that this can be achieved by a canonical for-
malism in which the background distribution is de-
fined not as the space average of the exact distribution,
but as the distribution corresponding to a fictitious
background plasma whose particles move along the

average, or oscillation center orbits of the real par-
ticles. In this previous work, however, there was no
way of treating resonant wave-particle interaction,
and it is the aim of the present work to overcome this
limitation by including the stochastic motion of the
oscillation centers, and the Landau growth or damping
of the waves.

In Sec. IT we present a canonical transformation to
oscillation center variables, such that the interaction
Hamiltonian between particles and the wave fields is
reduced to an essentially resonant part, while the non-
resonant interaction appears as a second-order re-
normalization of the unperturbed Hamiltonian? (i.e.,
the nonfluctuating part of the Hamiltonian). In Sec.
TII we work out the theory in more detail for the usual
example of a nonrelativistic plasma interacting via
purely electrostatic forces, while in Sec. IV we show
how our formulation reconciles the classical and
quantum versions of the conservation relations. (Our
method is purely classical, but the diffusion equation
for oscillation centers corresponds to the classical limit
of the quantum diffusion equation.) We also demon-
strate that the prescription given in Ref. 1 for gen-
eralizing the quasilinear diffusion equation to weakly
inhomogeneous systems, namely, replacing dfs/d!
by 8fo/dt+[ fo, Hol, can only be correct if H, includes
the renormalization energy. In view of current interest
in anomalous transport in inhomogeneous systems,
this may be the most important contribution of the
present work.

II. THE GENERAL METHOD

We shall use the standard type of generating function
F.(x, P, 1), in the notation of Goldstein.? By definition,
a particle can never be very far from its oscillation
center, and the transformation is therefore close to an
identity transformation

Fz(X,P,t)EX'P—I—S(X,P,l), (1)

where S is required to be nonsecular. Since we are
discussing weak turbulence, we order S to be O(N),
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where A is a smallness parameter characterizing the
wave amplitude. The transformation equations® are

__, 88(x,B,1)

O 2)

. 3S(x,P, )

1>—P+—-—ax , 3)
K(X,P,)=H(x,p, )+ 2520 )

ot

where K is the new Hamiltonian.
Eliminating X and p from Eq. (4) by use of Eqs.
(2) and (3), we have

35(x, P, ) +H(x, P+ g—“:t) -K (x+ )

2 By}

©)

If we were to set K=0, we would have the Hamilton—
Jacobi equation, X and P being constants of the motion.
However, S would be secular. To keep the transforma-
tion close to the identity, we require that the local time
average of S following a characteristic (i.e., a particle
trajectory in x, P space) be zero.

Write

H=Hy+H,, K=Hyt+K (6)

where H, is the unperturbed Hamiltonian, and H, is the
interaction Hamiltonian between the particle and the
wave fields, and is therefore O(A). The correction K’
contains both the O(\) residual interaction, and an
O(\?) “energy level shift.” Expanding Eq. (5), then,
we have

9S | 0Hy oS _OHo S _ ., 0K S
af " op 9x o0x ap ox op |
0H, S 1 &*H, 8S3S 1 8*H, 8SdS

2 55 29505 99 38~ 23905 92 35 OO

(7

where we have now chosen to denote the independent
momentum variable by p rather than P, so that §
denotes S(x, p, ), because we wish to integrate Eq.
(7) along the unperturbed orbits x,(¢| x, p, t),
po(¢ | x, p, 1) corresponding to the Hamiltonian Ho( %o,
Po, '), and such that X(¢|x, p, {)=x and po(¢| x,
P, t) =p. We can satisfy the requirement that S average
to zero on a trajectory by defining K’ by

dH, S 9K’ oS

K'(x, ,tEA(H ——— e ——
(x,2,0) ot dp dx Ix 4Jp

— e ® e s e e 3
t 29pdp 9xdx 20x9x 9p dp +OO‘))’ ®
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where A is a local time-averaging operator, to be de-
fined, and x and p are to be replaced by x,(¢ | x, p, )
and po(¢ | X, P, £) in the averaging process. We define
the averaging operator A by its action on an arbitrary
function f(¢),

4= [ eu-t5w), O
where!!
®(r) = (wr) ! sin(3rAw).
More useful is the Fourier transform
® dw
®(r) = f % ®(w) exp(—iwr),
0 27
where
$(w) =0(340— |w]), (10)

6 being the unit Heaviside step function. We take Aw
to be much less than the width of a typical spectral
feature, but much greater than a typical inverse diffu-
sion time.

With the choice of K’ in Eq. (8), Eq. (7) becomes

DS ' 8H, 8S 0K’ 88§
- (1- Hyt — g — ==
o 1 A)( 1+ p 9x 9x 9p
2 1 8*H, d
1 8Ho 9595 1 &'H, ;_S§+0(>\8)), (11)
29pdp 9xdx 23x9x Ip Ip

where D/ Dt denotes the convective derivative in phase
space. Equations (8) and (11) are to be solved itera-
tively, thus generating a canonical transformation
such that only the resonant part of the wave-particle
interaction is left in the new interaction Hamiltonian.
Having found K’, one must then solve the new Vlasov
equation

OF(x,p,1) 0K 9F 9K OF o

12
ot ap ox (12)

where F is the distribution function for oscillation
centers. Since the transformation is canonical, F is
simply related to the old distribution function f by

f(x,p,)=F(X,P, 1), (13)
where X and P are found by iterating Egs. (2) and (3)
AS(x, p, t) _ aS a2S

e

X(x,p, ) =x+

ap éx dp Ip
aS(x,p,t) , 85 &S
P(x,pt)=p— — +5§'apax+"" (14)

The charge density p(x, £) and current density j(x, t)
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are then easily computed:

p(x, 1) = Z es.r da?f-?(x) p 1),

. 0H,
(x0=Te [op 7

where the sum ), is over particle species. Use of Eq.
(15) in Maxwell’s equations completes the description
of the system.

We have completed the schematic description of our
transformation method, but it should be remarked here
that we have glossed over the central problem of plasma
kinetic theory, namely, solving the Vlasov equation
(12). The present method has not in any way solved
this problem, so we must still specify by what approxi-
mation scheme we mean to treat Eq. (12). We shall, in
fact, adopt the standard approach of linearizing Eq.
(12), and solving an initial value problem for Fi.
The asymptotic longtime behavior of Eqs. (15) does
not depend on the initial value of Fy, since its contribu-
tion decays by phase mixing. Thus, we may discard
initial value terms and assume that F, consists only of
the forced linear response to the wave field. We write
(assuming average homogeneity)

fi(x,p, 1), (15)

F(x,p, ) =Fo(p, ) +Fi(x,p, )+0(N), (16)
where Fy obeys
OFy | Oy OFy My oFy OK'OF .
o dp dx 9x dp 9x dp’
while Fy obeys the quasilinear diffusion equation
_a (LN
a  ap \dx

The linear contribution fi(x, p, {) to the ordinary
distribution function is seen from Eqgs. (13), (14), and
(16) to be given by
aS dF,
dx op’
the nonresonant linear response” being given by the
term involving S, and the resonant linear response by
the term involving Fy. Using Egs. (11), (17), and
(18) we may show that f; defined by Eq. (19) obeys
the ordinary linearized Vlasov equation to O(X),
so that the linear response is indeed independent of
the breakup between the resonant and nonresonant
regions. Thus, having found S there is actually no
need to find F; by direct calculation, as f; may be found
by letting the width of the resonant region go to zero
and deforming the integration contours in such a
fashion as to maintain causality.

fl(x7 P, t)=F1(x7 P, t)— (19)

III. THE ELECTROSTATIC APPROXIMATION

We shall now confine our attention to nonrela-
tivistic collisionless plasmas with no external magnetic
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field, and shall consider only electrostatic waves. Thus,
we take

Ho=(#/2m), Hi=LY epu(t) exp(ik-x), (20)
k

where > sums over all wave vectors k allowed by
periodic boundary conditions (¢=0). There has been
considerable controversy over the correct way to handle
complex frequencies,”* which we avoid by following
Kaufman* in the use of the Eikonal representation
(in which all frequencies are real):

&i(t) = Zl? &' (8) exp[— i (8) ],

61() = / " od(?) dt

to

(21)

where ¢;' and ;! are slowly varying functions of time
due to wave growth or damping, and modification
of the background distribution by diffusion, respec-
tively. We take diffusion to be the slower process since
the diffusion tensor is O(A?). The superscript ¢ dis-
tinguishes both different wave modes and the positive
and negative frequency branches of the same mode
(120 implies w20 in a suitable reference frame).
The reality of ¢! is insured by the conditions w_;~!=
—wkl) ¢—k_l=¢kl*'

To O(\) we may show that for the kth Fourier
component of K’ Eq. (8) gives

.. a
Kk'= Z e (¢kl+i¢kl _z)
1 Oy

X ®(wl—k-p/m) exp(—ift). (22)
Also Eq. (11) becomes
] .., 9
(;')_t +ik-p/m) Syp=— ; e (¢kl+"¢kl a_w_k’)
X (w'—kp/m) exp(—ifi’), (23)

where
M(w)=1—®(w).

We define S in such a way that there is no initial phase
information. Thus, Eq. (31) is solved by integrating
from (= — . We then find

... 0 iII(w,,’—-—k-p/m))
—_ 1 [ —— e e
Sk—' El € (¢k l 1¢k awkl wkl'—'k' p/m

X exp(—if*). (24)

We may now evaluate the nonlinear part of K’. The
k=0 component of K’, which we call the renormaliza-
tion energy and denote by A(p), is given by
ek |o 9 T(or—k-p/m)
8wLf duyl wk’—k-p/m )

A(p)=—X (25)

kit m
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This represents an extension to the case of resonant
interaction of the formula found by the averaged
Lagrangian method.” It is encouraging to note that
A(p) is well defined in the limit Aw—0, since II( )
may then be replaced by the principal part operator P.
Because we have, in fact, assumed Aw to be small
compared with the width of the spectrum, the error
involved in letting Aw—0 is negligible.

The linear response f; has the kth Fourier component

. 8F, ( L, 9 )
= — — 100 ge— L | J————
fe ZZDeXP( 6k ap *\* Hidi! o

1
_— . (26
X wkl—k-p/m-l-iO ( )
Inserting this in Eq. (15) gives
k? Je
o e — 1 o L
p=— (= Doiti-Zgs), @
where
4re? k- (6Fo/6p)
k, 1 &dp ——, 2
e(k, ) =1+ ); Pw——k-p/m-}-iO (28)
Poisson’s equation implies
, Oe .
e(k, wi!) ppl i — ' = (29)
awk

Denote € by e+1e;, and assume ¢; small. Then, we may
define ;! consistently with Eq. (29) by

e(k, wp!) =0. (30)
It follows that
d
Py | &’ [2=2vi" | ¢4 |2, (31)
e, \ 1
I— . l
== (3] et end)
de,
= ( : z) Z 4#82/d3p1r§(wk —k-p/m) l—‘—-?ﬁ .
aw;, p
(32)
Equation (18) gives
oF, 8 ( oF,
ot ap ap)’ (33)
where
D=dme? 3 (| ¢ |/8nLo)kk2ns(wil—k-p/m)  (34)
PR

is the resonant part only of the quasilinear diffusion
coefficient.
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IV. MOMENTUM AND ENERGY CONSERVATION
IN AN INHOMOGENEOUS PLASMA

We now wish to show that the following generaliza-
tions of Egs. (31) and (33) satisfy momentum and
energy conservation. We expect®® Eq. (31) to gen-
eralize to

R
where
de, 2| il |2

e (36)
while (33) should generalize to
OFy | 3(K) oFy (K} Fy _ 8 ( aFo) -
ot dp Ix dx dp ap Jop
where { ) denotes local space averaging, so that

(K)=Hot+A(p; %, 8), (38)

where A is given by Eq. (25). The length L of our
Fourier box is taken to be much less than the in-
homogeneity scale length.

To verify energy and momentum conservation, we
must show that Eqs. (35) and (37) satisfy

a(G)

v M)=0 (39a)

and

] (W)

—— +V:(8)=0, (39b)

where the momentum density G, stress tensor T,
energy density W, and energy flux vector S are de-
fined by

6= ®ppf(xp0,  (400)

. oH F*l—2EE
D B e MRCLY
W= 5 & Hf(x, p, O-+L(V0) Y], (400
s- % [ e 52 mux 0+ T, (400

where Ho= p*/2m, E=—V¢, and B is defined" by

dE
¢V x B=4rj+ =’ v-B=0. (41)
To calculate the average of Eq. (40) to O(A%) we need
the second-order contribution to (f), which we find
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from Eqs. (13), (14), and (16) to be given by
190 351 851> 6Fo)
F —— —_——
()= )t ( dx dx/ dp

24p
L P

] 3Fo)
= — T dre ——
ap (E ¢ 87FL6 6wk wy! k-p/m ap ’
(42)

where we have inferred, from Kaufman’s* work, that
(F2) acts to make {f;) well defined by putting the
principal part operator P in the correct place.

It is now a straightforward, if tedious, exercise to
evaluate the averages of Eq. (40), and we find, using
Egs. (25), (28), and (30)

{G)= ZB: [ @p Fop+ E 'k, (43a)
U LR e
+1 E %:Ik;j , (43b)
W)= E J & FoHot- g;l mlwit, (43¢)
®=% ferr 2w+ Emar, @

to O(A?*). Now using the microscopic conservation
relations, which follow from Egs. (32), (34), and
(36),

F
ZZyk’nklk Z/dspD'a 2
k,l

3 2yilngdiogt= / d3p—— D-a—F" (44)
k,l
and the identities, which use Eq (30),
6(K) wi! B2 | gyl |2
dip Fp —— —_
f ST +Z & 9x sz’; 8rLs ’
6(K) R | gl |2
a@*p F, —_— (45
fp 0 +Z at at:‘,; sn 0 (1)

we may show that, to O(A?), the moments of Egs.
(35) and (37) are indeed consistent with Eqs. (39)
and (43).

Note that we have assumed that > is equivalent
to an integral, enabling integration by parts. This
continuum limit is really implicit in Eq. (35). Also
note that the energy density comes out in the form

(Wy= 2 [ &p Fo(K )+ § Ml — zk‘, (8 | ¢u* |¥/8nL5),
(46)

which is actually the form expected from application of
Nocther’s theorem to the averaged Lagrangian density

R. L. DEWAR

of the plasma.’® However, use of the identity
2 [ dp Fo= 3 (k| & |%/8r L")
L k,l

shows that Eqgs. (43c) and (46) are equivalent,

If we had used Ho rather than (K) in Eq. (37), we
would not have satisfied the conservation conditions,
showing that the prescription given in Ref. 1 for
generalizing the quasilinear diffusion equation is only
correct if H is renormalized. The physical interpretation
of the renormalization energy A is clear, it being simply
a generalization of the ‘“high-frequency potential”
used in the theory of rf confinement.* We have thus
shown how to combine both radiation pressure and
resonant diffusion in one equation.

V. DISCUSSION

The approach of this paper has been predicated
on the assumption that there is a fundamental dis-
tinction between resonant and nonresonant interaction,
the resonant interaction being essentially stochastic
and nonresonant interaction being adiabatic. This
idea is strengthened somewhat by recent work on
particles accelerated by periodic forces.'” However, it is
not clear how the renormalization of the nonresonant
interaction introduced in this paper is related to the
renormalization of the resonant interaction introduced
by Dupree.”® Unifying the two approaches must be
left to future work.

It is clear that our transformation has application in
plasma kinetic theory as well as quasilinear theory.
It is easily seen that the fluctuating field in the plasma
is simply the superposition of the dielectrically screened
fields of fictitious particles (quasiparticles) moving
with the oscillation centers, Thus, the oscillation
center description formalizes Hubbard’s interpretation
of the dressed test particle picture.®* Probably the
most important application of our method is in the
theory of momentum and heat transport across mag-
netic fields, where it has been suggested? that the
long mean free path of waves compared with particles
enhances their effect. Examination of Eq. (43b) shows
that some care must be taken in order to extract the
correct viscous effect, and generalization of our trans-
formation to the case of strong external magnetic field
would provide a means for treating this problem.
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